What mechanisms support our ability to estimate durations on the order of minutes? Behavioral studies in humans have shown that changes in contextual features lead to overestimation of past durations. Based on evidence that the medial temporal lobes and prefrontal cortex represent contextual features, we related the degree of fMRI pattern change in these regions with people’s subsequent duration estimates. After listening to a radio story in the scanner, participants were asked how much time had elapsed between pairs of clips from the story. Our ROI analyses found that duration estimates were correlated with the neural pattern distance between two clips at encoding in the right entorhinal cortex. Moreover, whole-brain searchlight analyses revealed a cluster spanning the right anterior temporal lobe. Our findings provide convergent support for the hypothesis that retrospective time judgments are driven by 'drift' in contextual representations supported by these regions.DOI: http://dx.doi.org/10.7554/eLife.16070.001
We explore the idea that eye-movement strategies in reading are precisely adapted to the joint constraints of task structure, task payoff, and processing architecture. We present a model of saccadic control that separates a parametric control policy space from a parametric machine architecture, the latter based on a small set of assumptions derived from research on eye movements in reading (Engbert, Nuthmann, Richter, & Kliegl, 2005;Reichle, Warren, & McConnell, 2009). The eye-control model is embedded in a decision architecture (a machine and policy space) that is capable of performing a simple linguistic task integrating information across saccades. Model predictions are derived by jointly optimizing the control of eye movements and task decisions under payoffs that quantitatively express different desired speed-accuracy trade-offs. The model yields distinct eye-movement predictions for the same task under different payoffs, including single-fixation durations, frequency effects, accuracy effects, and list position effects, and their modulation by task payoff. The predictions are compared to-and found to accord with-eye-movement data obtained from human participants performing the same task under the same payoffs, but they are found not to accord as well when the assumptions concerning payoff optimization and processing architecture are varied. These results extend work on rational analysis of oculomotor control and adaptation of reading strategy (Bicknell & Levy, 2010b;McConkie, Rayner, & Wilson, 1973;Norris, 2009;Wotschack, 2009) by providing evidence for adaptation at low levels of saccadic control that is shaped by quantitatively varying task demands and the dynamics of processing architecture.
Functional magnetic resonance imaging (fMRI) offers a rich source of data for studying the neural basis of cognition. Here, we describe the Brain Imaging Analysis Kit (BrainIAK), an open-source, free Python package that provides computationally optimized solutions to key problems in advanced fMRI analysis. A variety of techniques are presently included in BrainIAK: intersubject correlation (ISC) and intersubject functional connectivity (ISFC), functional alignment via the shared response model (SRM), full correlation matrix analysis (FCMA), a Bayesian version of representational similarity analysis (BRSA), event segmentation using hidden Markov models, topographic factor analysis (TFA), inverted encoding models (IEMs), an fMRI data simulator that uses noise characteristics from real data (fmrisim), and some emerging methods. These techniques have been optimized to leverage the efficiencies of high-performance compute (HPC) clusters, and the same code can be seamlessly transferred from a laptop to a cluster. For each of the aforementioned techniques, we describe the data analysis problem that the technique is meant to solve and how it solves that problem; we also include an example Jupyter notebook for each technique and an annotated bibliography of papers that have used and/or described that technique. In addition to the sections describing various analysis techniques in BrainIAK, we have included sections describing the future applications of BrainIAK to real-time fMRI, tutorials that we have developed and shared online to facilitate learning the techniques in BrainIAK, computational innovations in BrainIAK, and how to contribute to BrainIAK. We hope that this manuscript helps readers to understand how BrainIAK might be useful in their research.
Functional magnetic resonance imaging (fMRI) offers a rich source of data for studying the neural basis of cognition. Here, we describe the Brain Imaging Analysis Kit (BrainIAK), an open-source, free Python package that provides computationally-optimized solutions to key problems in advanced fMRI analysis. A variety of techniques are presently included in BrainIAK: intersubject correlation (ISC) and intersubject functional connectivity (ISFC), functional alignment via the shared response model (SRM), full correlation matrix analysis (FCMA), a Bayesian version of representational similarity analysis (BRSA), event segmentation using hidden Markov models, topographic factor analysis (TFA), inverted encoding models (IEM), an fMRI data simulator that uses noise characteristics from real data (fmrisim), and some emerging methods. These techniques have been optimized to leverage the efficiencies of high performance compute (HPC) clusters, and the same code can be seamlessly transferred from a laptop to a cluster. For each of the aforementioned techniques, we describe the data analysis problem that the technique is meant to solve, and how it solves that problem; we also include an example Jupyter notebook for each technique and an annotated bibliography of papers that have used and/or described that technique. In addition to the sections describing various analysis techniques in BrainIAK, we have included sections describing the future applications of BrainIAK to real-time fMRI, tutorials that we have developed and shared online to facilitate learning the techniques in BrainIAK, computational innovations in BrainIAK, and how to contribute to BrainIAK. We hope that this manuscript helps readers to understand how BrainIAK might be useful in their research.
Objective. Algorithms to detect changes in cognitive load using non-invasive biosensors (e.g. electroencephalography (EEG)) have the potential to improve human–computer interactions by adapting systems to an individual’s current information processing capacity, which may enhance performance and mitigate costly errors. However, for algorithms to provide maximal utility, they must be able to detect load across a variety of tasks and contexts. The current study aimed to build models that capture task-general EEG correlates of cognitive load, which would allow for load detection across variable task contexts. Approach. Sliding-window support vector machines (SVM) were trained to predict periods of high versus low cognitive load across three cognitively and perceptually distinct tasks: n-back, mental arithmetic, and multi-object tracking. To determine how well these SVMs could generalize to novel tasks, they were trained on data from two of the three tasks and evaluated on the held-out task. Additionally, to better understand task-general and task-specific correlates of cognitive load, a set of models were trained on subsets of EEG frequency features. Main results. Models achieved reliable performance in classifying periods of high versus low cognitive load both within and across tasks, demonstrating their generalizability. Furthermore, continuous model outputs correlated with subtle differences in self-reported mental effort and they captured predicted changes in load within individual trials of each task. Additionally, alpha or beta frequency features achieved reliable within- and cross-task performance, suggesting that activity in these frequency bands capture task-general signatures of cognitive load. In contrast, delta and theta frequency features performed considerably worse than the full cross-task models, suggesting that delta and theta activity may be reflective of task-specific differences across cognitive load conditions. Significance. EEG data contains task-general signatures of cognitive load. Sliding-window SVMs can capture these signatures and continuously detect load across multiple task contexts.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.