The discovery of potent, peptide site directed, tyrosine kinase inhibitors has remained an elusive goal. Herein we describe the discovery of two such clinical candidates that inhibit the tyrosine kinase Src. Compound 1 is a phase 3 clinical trial candidate that is likely to provide a first in class topical treatment for actinic keratosis (AK) with good efficacy and dramatically less toxicity compared to existing standard therapy. Compound 2 is a phase 1 clinical trial candidate that is likely to provide a first in class treatment of malignant glioblastoma and induces 30% long-term complete tumor remission in animal models. The discovery strategy for these compounds iteratively utilized molecular modeling, along with the synthesis and testing of increasingly elaborated proof of concept compounds, until the final clinical candidates were arrived at. This was followed with mechanism of action (MOA) studies that revealed tubulin polymerization inhibition as the second MOA.
Accurately predicting the binding affinity of ligands to their receptors by computational methods is one of the major challenges in structure-based drug design. One of the potentially significant errors in these predictions is the common assumption that the ligand binding affinity contributions of noncovalent interactions are additive. Herein we present data obtained from two separate series of thrombin inhibitors containing hydrophobic side chains of increasing size that bind in the S3 pocket and with, or without, an adjacent amine that engages in a hydrogen bond with Gly 216. The first series of inhibitors has a m-chlorobenzyl moiety binding in the S1 pocket, and the second has a benzamidine moiety. When the adjacent hydrogen bond is present, the enhanced binding affinity per A(2) of hydrophobic contact surface in the S3 pocket improves by 75% and 59%, respectively, over the inhibitors lacking this hydrogen bond. This improvement of the binding affinity per A(2) demonstrates cooperativity between the hydrophobic interaction and the hydrogen bond.
Many chemotherapeutics, such as paclitaxel,
are administered intravenously
as they suffer from poor oral bioavailability, partly because of efflux
mechanism of P-glycoprotein in the intestinal epithelium. To date,
no drug has been approved by the U.S. Food and Drug Administration
(FDA) that selectively blocks this efflux pump. We sought to identify
a compound that selectively inhibits P-glycoprotein in the gastrointestinal
mucosa with poor oral bioavailability, thus eliminating the issues
such as bone marrow toxicity associated with systemic inhibition of
P-glycoprotein. Here, we describe the discovery of highly potent,
selective, and poorly orally bioavailable P-glycoprotein inhibitor 14 (encequidar). Clinically, encequidar was found to be well
tolerated and minimally absorbed; and importantly, it enabled the
oral delivery of paclitaxel.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.