The nucleotide sequences of a specific region of the nucleoprotein gene were compared in order to investigate the genetic population structure of marine viral haemorrhagic septicaemia virus (VHSV). Analysis of the sequence from 128 isolates of diverse geographic and host origin renders this the most comprehensive molecular epidemiological study of marine VHSV conducted to date. Phylogenetic analysis of nucleoprotein gene sequences confirmed the existence of the 4 major genotypes previously identified based on N-and subsequent G-gene based analyses. The range of Genotype I included subgroups of isolates associated with rainbow trout aquaculture (Genotype Ia) and those from the Baltic marine environment (Genotype Ib) to emphasise the relatively close genetic relationship between these isolates. The existence of an additional genotype circulating within the Baltic Sea (Genotype II) was also confirmed. Genotype III included marine isolates from around the British Isles in addition to those associated with turbot mariculture, highlighting a continued risk to the development of this industry. Genotype IV consisted of isolates from the marine environment in North America. Taken together, these findings suggest a marine origin of VHSV in rainbow trout aquaculture. The implications of these findings with respect to the future control of VHSV are discussed. The capacity for molecular phylogenetic analysis to resolve complex epidemiological problems is also demonstrated and its likely future importance to disease management issues highlighted.
Results demonstrated that ISAV-HPR0 appeared as a seasonal and transient infection without detectable ISA mortality or pathology. This finding, coupled to an apparent gill tropism of ISAV-HPR0, suggests ISAV-HPR0 causes a subclinical respiratory infection more like seasonal influenza, as opposed to the systemic infection and serious disease caused by highly pathogenic ISAV. The mean time before marine sites became infected was 7.7 months after transfer to seawater of the fish, suggesting a potentially unknown marine reservoir of infection. Sequence analysis identified two main subtypes of ISAV-HPR0 sequences, one of which showed close genetic association with ISAV isolates responsible for the disease outbreak in the Faroes. Thus ISAV-HPR0 might represent an ancestor of pathogenic variants and thus be a potential risk factor in the emergence of new strains of disease-causing ISAV. Our data, however, suggest that the risk of emergence of pathogenic ISAV variants from a reservoir of ISAV-HPR0 is low. This risk is probably being further reduced by practical management strategies adopted in the Faroes and aimed at reducing the potential for maintenance and adaptation of ISAV-HPR0.
In mammals, IL-21 is a common γ chain cytokine produced by activated CD4+ T cells and NKT cells that acts on multiple lineages of cells. Although IL-21 has also been discovered in birds, amphibians, and fish, to date, no functional studies have been reported for any nonmammalian IL-21 molecule. We have sequenced an IL-21 gene (tIL-21) in rainbow trout, which has a six-exon/five-intron structure, is expressed in immune tissues, and is induced by bacterial and viral infection and the T cell stimulant PHA. In contrast to mammals, calcium ionophore and PMA act synergistically to induce tIL-21. Recombinant tIL-21 (rtIL-21) induced a rapid and long-lasting (4–72 h) induction of expression of IFN-γ, IL-10, and IL-22, signature cytokines for Th1-, Th2-, and Th17-type responses, respectively, in head kidney leukocytes. However, rtIL-21 had little effects on the expression of other cytokines studied. rtIL-21 maintained the expression of CD8α, CD8β, and IgM at a late stage of stimulation when their expression was significantly decreased in controls and increased the expression of the Th cell markers CD4, T-bet, and GATA3. Intraperitoneal injection of rtIL-21 confirmed the in vitro bioactivity and increased the expression of IFN-γ, IL-10, IL-21, IL-22, CD8, and IgM. Inhibition experiments revealed that the activation of JAK/STAT3, Akt1/2, and PI3K pathways were responsible for rtIL-21 action. This study helps to clarify the role of IL-21 in lower vertebrates for the first time, to our knowledge, and suggests IL-21 is a likely key regulator of T and B cell function in fish.
Rainbow trout (Oncorhynchus mykiss Walbaum) in southern Western Australia have undergone passive selection for over 19 generations to survive high water temperatures. Based on the conceptual model of 'oxygen-and capacity-limited thermal tolerance', we measured critical thermal maximum (CT max ), maximum heart rate ( f H,max ) and aerobic scope to test the hypothesis that these rainbow trout can maintain aerobic scope at high temperatures through a robust cardiac performance supporting oxygen delivery. Across five family groups CT max averaged 29.0±0.02°C. Aerobic scope was maximized at 15.8±0.3°C (T opt ), while the upper pejus temperature (T pej , set at 90% of maximum aerobic scope) was 19.9±0.3°C. Although aerobic scope decreased at temperatures above T opt , the value at 25°C remained well over 40% of the maximum. Furthermore, pharmacologically stimulated f H,max increased with temperature, reaching a peak value between 23.5±0.4 and 24.0±0.4°C (T max ) for three family groups. The Arrhenius breakpoint temperature (T AB ) for f H,max was 20.3±0.3 to 20.7±0.4°C, while the average Q 10 breakpoint temperature (T QB , when the incremental Q 10 <1.6) for f H,max was 21.6±0.2 to 22.0±0.4°C. Collectively, f H,max progressively became less temperature dependent beyond 20°C (T AB and T QB ), which coincides with the upper T pej for aerobic scope. Although upper thermal performance indices for both aerobic scope and f H,max were compared among family groups in this population, appreciable differences were not evident. Compared with other populations of rainbow trout, the present assessment is consistent with the prediction that this strain has undergone selection and shows the ability to tolerate higher water temperatures.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.