Effective marine management requires comprehensive data on the status of marine biodiversity. However, efficient methods that can document biodiversity in our oceans are currently lacking. Environmental DNA (eDNA) sourced from seawater offers a new avenue for investigating the biota in marine ecosystems. Here, we investigated the potential of eDNA to inform on the breadth of biodiversity present in a tropical marine environment. Directly sequencing eDNA from seawater using a shotgun approach resulted in only 0.34% of 22.3 million reads assigning to eukaryotes, highlighting the inefficiency of this method for assessing eukaryotic diversity. In contrast, using ‘tree of life’ (ToL) metabarcoding and 20-fold fewer sequencing reads, we could detect 287 families across the major divisions of eukaryotes. Our data also show that the best performing ‘universal’ PCR assay recovered only 44% of the eukaryotes identified across all assays, highlighting the need for multiple metabarcoding assays to catalogue biodiversity. Lastly, focusing on the fish genus Lethrinus, we recovered intra- and inter-specific haplotypes from seawater samples, illustrating that eDNA can be used to explore diversity beyond taxon identifications. Given the sensitivity and low cost of eDNA metabarcoding we advocate this approach be rapidly integrated into biomonitoring programs.
Symbioses are widespread in nature and occur along a continuum from parasitism to mutualism. Coral-dinoflagellate symbioses are defined as mutualistic because both partners receive benefit from the association via the exchange of nutrients. This successful interaction underpins the growth and formation of coral reefs. The symbiotic dinoflagellate genus Symbiodinium is genetically diverse containing eight divergent lineages (clades A-H). Corals predominantly associate with clade C Symbiodinium and to a lesser extent with clades A, B, D, F, and G. Variation in the function and interactive physiology of different coral-dinoflagellate assemblages is virtually unexplored but is an important consideration when developing the contextual framework of factors that contribute to coral reef resilience. In this study, we present evidence that clade A Symbiodinium are functionally less beneficial to corals than the dominant clade C Symbiodinium and may represent parasitic rather than mutualistic symbionts. Our hypothesis is supported by (i) a significant correlation between the presence of Symbiodinium clade A and health-compromised coral; (ii) a phylogeny and genetic diversity within Symbiodinium that suggests a different evolutionary trajectory for clade A compared with the other dominant Symbiodinium lineages; and (iii) a significantly lower amount of carbon fixed and released by clade A in the presence of a coral synthetic host factor as compared with the dominant coral symbiont lineage, clade C. Collectively, these data suggest that along the symbiotic continuum the interaction between clade A Symbiodinium and corals may be closer to parasitism than mutualism.cnidaria ͉ Symbiodinium ͉ disease ͉ mutualistic ͉ parasitic
Naturally extreme temperature environments can provide important insights into the processes underlying coral thermal tolerance. We determined the bleaching resistance of Acropora aspera and Dipsastraea sp. from both intertidal and subtidal environments of the naturally extreme Kimberley region in northwest Australia. Here tides of up to 10 m can cause aerial exposure of corals and temperatures as high as 37 °C that fluctuate daily by up to 7 °C. Control corals were maintained at ambient nearshore temperatures which varied diurnally by 4-5 °C, while treatment corals were exposed to similar diurnal variations and heat stress corresponding to ~20 degree heating days. All corals hosted Symbiodinium clade C independent of treatment or origin. Detailed physiological measurements showed that these corals were nevertheless highly sensitive to daily average temperatures exceeding their maximum monthly mean of ~31 °C by 1 °C for only a few days. Generally, Acropora was much more susceptible to bleaching than Dipsastraea and experienced up to 75% mortality, whereas all Dipsastraea survived. Furthermore, subtidal corals, which originated from a more thermally stable environment compared to intertidal corals, were more susceptible to bleaching. This demonstrates that while highly fluctuating temperatures enhance coral resilience to thermal stress, they do not provide immunity to extreme heat stress events.
Abstract. Most studies on coral reefs have focused on shallow reef (,30 m) systems due to the technical limitations of conducting scientific diving deeper than 30 m. Compared to their shallow-water counterparts, these mesophotic coral reefs (30-150 m) are understudied, which has slowed our broader understanding of the biodiversity, ecology, and connectivity of shallow and deep coral reef communities. We know that the light environment is an important component of the productivity, physiology, and ecology of corals, and it restricts the distribution of most species of coral to depths of 60 m or less. In the Bahamas, the coral Montastraea cavernosa has a wide depth distribution, and it is one of the most numerous corals at mesophotic depths. Using a range of optical, physiological, and biochemical approaches, the relative dependence on autotrophy vs. heterotrophy was assessed for this coral from 3 to 91 m. These measurements show that the quantum yield of PSII fluorescence increases significantly with depth for M. cavernosa while gross primary productivity decreases with depth. Both morphological and physiological photoacclimatization occurs to a depth of 91 m, and stable isotope data of the host tissues, symbionts, and skeleton reveal a marked decrease in productivity and a sharp transition to heterotrophy between 45 and 61 m. Below these depths, significant changes in the genetic composition of the zooxanthellae community, including genotypes not previously observed, occur and suggest that there is strong selection for zooxanthellae that are suited for survival in the light-limited environment where mesophotic M. cavernosa are occurring.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.