Photooxidation of sulfur-containing amino acids and derivatives readily occurs upon visible-light irradiation in the presence of flavins. The sulfur moiety seems pivotal for interaction, as was determined from kinetic analyses using laser flash photolysis spectroscopy. After photooxidation, the resulting radical intermediates were characterized by addition to a spin trap, followed by electron paramagnetic resonance spectroscopy and evaluation of the coupling constants. The presence of the proposed radical intermediates was strongly supported by the identification of the reaction products using mass spectrometry. Accordingly, feasible degradation pathways for various sulfur-containing amino acids and derivatives were proposed. It was finally proven that flavin-induced photoproduction of sulfhydryl radicals and recombination with a 3-methylbut-2-enyl radical, derived from the photodegradation of hop-derived isohumulones, are decisive in the formation of beer lightstruck flavor.
The metabolomics goal, the unbiased relative quantification of all metabolites in a biological system, still lacks a universal analytical approach. In the LC-MS line of approach, one of the major problems encountered is the polar nature of a large group of (plant) metabolites. Here, we investigate the potential of hydrophilic interaction chromatography (HILIC) and compare its qualities with extended polarity RP chromatography. Two opposite LC phase compositions (Atlantis dC18 vs. TSKgel Amide-80) are compared in a plant metabolomics setting. Both performed equally well with regard to retentive capacities, but variation in peak area was about 5% higher for the HILIC approach. Focussing on matrix effects (ME) on the other hand, it was observed that this well-known problem in RP LC-MS metabolomics was not reduced on using hydrophilic interaction chromatography.
A capillary LC-MS/MS system was evaluated for the absolute quantification of enkephalins in cerebrospinal fluid (CSF). On column focusing on a C18 trapping column, in-line with the analytical column, was used for preconcentration. Quantification was performed with a triple quadrupole instrument in the multiple reaction monitoring mode. Weighted linear regression analysis proves to be a good linearity in a dynamic range of two orders of magnitude. The method was validated, yielding calibration curves with correlation coefficients greater than 0.9914. Assay precision and accuracy were evaluated by direct injection of enkephalin fortified artificial CSF (aCSF) samples at three concentration levels. Mean accuracy of analysed concentrations was between 97.63 and 107.6%. LOD and LOQ were assessed at, respectively, 0.5 and 1 pmol/mL. Validation results show that it is feasible, with a capillary LC-MS/MS system, to quantify neuropeptides in the low femtomole range in aCSF. The obtained coefficients of variation, however, indicate that the use of appropriate isotopically labelled internal standards in neuropeptide quantification using narrow bore LC, combined with ESI-MS, may be highly beneficial.
a b s t r a c tThe work presented here deals with the development of a quantitative tool for the determination of the quaternary ammonium anticholinergic glycopyrrolate in human plasma samples. Mepenzolate was used as an internal standard. The plasma samples were subjected to a suitable sample clean-up consisting of a simple and relatively fast, two step liquid-liquid ion-pair extraction procedure. The chromatography, using the same volatile ion-pair reagent heptafluorobutyric acid (HFBA), takes only 10 min. Relative standard deviation of retention times was never above 2.26% (n = 36). The method was fully validated based on the US FDA Bioanalytical Method Validation Guidance for Industry. As such, a quantitative ESI-LC-MS(/MS) (TOF mass spectrometry) method was optimized for the absolute quantification of glycopyrrolate in human plasma in a concentration range from 0.101 to 101 ng/mL using a quadratic calibration function (R 2 = 0.9995), y = −2.21 × 10 −4 (±3.93 × 10 −5 ) × x 2 + 5.85 × 10 −2 (±5.27 × 10 −3 ) × x + 4.08 × 10 −3 (±4.82 × 10 −4 ). For the three QC concentrations (QC 1 0.252, QC 2 2.52, and QC 3 25.2 ng/mL) and the LLOQ (0.101 ng/mL), total precision was under 20% (18.0% (n = 6) at the LLOQ) and maximum accuracy was 112% (88.9% for the LLOQ, n = 6). Absolute matrix effect (maximum 133% ± 9.59, n = 3), absolute recovery (better than 41.8% ± 2.22, n = 3), relative (inter-subject) matrix effect (maximum 10.9% ± 1.45, n = 4) and process efficiency (better than 45.2% ± 5.74, n = 3) too were assessed at the 3 QC concentrations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.