Cultivation of Miscanthus x giganteus L. (Mis) with annual harvest of biomass could provide an additional C source for farmers. To test the potential of Mis-C for immobilizing inorganic N from slurry or manure and as a C source for soil organic matter build-up in comparison to wheat (Triticum aestivum L.) straw (WS), a greenhouse experiment was performed. Pot experiments with ryegrass (Lolium perenne L.) were set up to investigate the N dynamics of two organic fertilisers based on Mis at Campus Klein-Altendorf, Germany. The two fertilisers, a mixture of cattle slurry and Mis as well as cattle manure from Mis-bedding material resulted in a slightly higher N immobilisation. Especially at the 1st and 2nd harvest, they were partly significantly different compared with the WS treatments. The fertilisers based on Mis resulted in a slightly higher microbial biomass C and microbial biomass N and thus can be identified as an additional C source to prevent nitrogen losses and for the build-up of soil organic matter (SOM) in the long-term.
For several decades, farmers have been mixing rock powders with livestock slurry to reduce its NH3 emissions and increase its nutrient content. However, mixing rock powders with slurry is controversial, and there is currently no scientific evidence for its effects on NH3 and greenhouse gas (GHG) emissions or on changes in its nutrient content due to element release from rock powders. The major aim of this study was therefore to analyse the effects of mixing two commercially established rock powders with cattle slurry on NH3, CO2, N2O and CH4 emissions, and on nutrient release over a course of 46 days. We found that rock powders did not significantly affect CO2 emission rates. NH3 and N2O emission rates did not differ significantly up until the end of the trial, when the emission rates of the rock powder treatments significantly increased for NH3 and significantly decreased for N2O, respectively, which coincided with a reduction of the slurry crust. Cumulative NH3 emissions did not, however, differ significantly between treatments. Unexpected and significant increases in CH4 emission rates occurred for the rock powder treatments. Rock powders increased the macro- and micronutrient content of the slurry. The conflicting results are discussed and future research directions are proposed.
Cultivation of perennials such as Miscanthus x giganteus Greef et Deuter (Mis) combines the provision of ecosystem services and the generation of additional carbon sources for farming. The potential of Mis based fertilisers, regarding immobilisation of inorganic nitrogen (N) and build-up of soil organic matter (SOM), was tested in a field trial. Therefore, a crop rotation of winter barley (Hordeum vulgare L.), mustard (Sinapis alba L.) as catch crop, sugar beet (Beta vulgaris L.) and winter wheat (Triticum aestivum L.) was set up. The tested treatments were a mixture of Cattle Slurry (CS) and Mis, a mixture of CS and Wheat Straw (CS–WS), Cattle Manure (CM) from Mis shredded bedding, CM from WS shredded bedding, a pure CS, Urea Ammonium Nitrate (UAN) and a treatment without any N applied (NoN). When the carbon-rich fertilisers (both mixtures and manures) were applied to cereals, they led to a slight N immobilisation compared to pure CS, whereas differences were mostly not significant. Furthermore, Mis fertilisers were at least as efficient as WS-based organic fertilisers in inducing a contribution of SOM build-up and in reducing inorganic N before winter and thus preventing N losses, whereas differences were mostly not significant.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.