Storm surge associated with Hurricane Katrina and the breach of levees protecting New Orleans, Louisiana allowed floodwaters from Lake Pontchartrain to inundate 80% of the city. Environmental samples were collected during September 16-18, 2005 to determine immediate human and wildlife health hazards from pathogens and toxicants in the floodwaters. Baseline information on potential long-term environmental damage resulting from contaminants in water and sediments pumped into Lake Pontchartrain was also collected. Concentrations of aldrin, arsenic, lead, and seven semivolatile organic compounds in sediments/soils exceeded one or more United States Environmental Protection Agency (USEPA) thresholds for human health soil screening levels and high priority bright line screening levels. High numbers of Aeromonas spp., pathogenic Vibrio spp., and other coliform bacteria were found in floodwater samples. Alligator and snake tissues did not contain excessive toxicant concentrations. Initial findings suggest numerous environmental contaminants are present in New Orleans and support the need for further evaluation of the extent of those threats.
We studied the biomagnification of total mercury and methylmercury in a subtropical freshwater lake, Caddo Lake, Texas and Louisiana, USA. The present study is unique in that it not only included invertebrates (seven species) and fish (six species) but also an amphibian (one species), reptiles (three species), and mammals (three species). Nonfish vertebrates such as those included in the present study are often not included in assessments of trophic transfer of Hg. Mean trophic position (determined using stable isotopes of nitrogen) ranged from 2.0 (indicative of a primary consumer) to 3.8 (indicative of a tertiary consumer). Mean total Hg concentrations ranged from 36 to 3,292 ng/g dry weight in muscle and whole body and from 150 to 30,171 ng/g dry weight in liver. Most of the Hg in muscle and whole-body tissue was found as methylmercury, and at least 50% of the Hg found in liver was in the inorganic form (with the exception of largemouth bass, Micropterus salmoides). Mercury concentrations were positively correlated with trophic position, indicating that biomagnification occurs in the food web of Caddo Lake. The food web magnification factors (FWMFs; slope of the relationship between mean Hg concentration and trophic position) for both total Hg and methylmercury were similar to those observed in other studies. Because most of the total Hg in consumers was methylmercury, the FWMF for methylmercury was not significantly different from the FWMF for total Hg. Some vertebrates examined in the present study had low Hg concentrations in their tissues similar to those observed in invertebrates, whereas others had concentrations of Hg in their tissues that in previous studies have been associated with negative health consequences in fish.
In late October 2005, twenty-seven metals were determined in soils and sediment layers deposited by floodwaters (flood sediments) within New Orleans, Louisiana. Samples originated from 43 sites along four transects, at an industrial canal, and near the Superdome. The sampling design encompassed flooded and nonflooded areas as well as differing economic strata within the city. Results from this effort confirmed findings of our previous study designed to quantify contaminant profiles in the aftermath of Hurricane Katrina. The expanded sampling from this most recent investigation revealed that arsenic (As) and lead (Pb) concentrations exceeded United States Environmental Protection Agency (USEPA) soil screening criteria indiscriminately throughout the city. However, As and Pb concentrations were lower along St. Charles Avenue, an area largely unaffected by hurricane related flooding. Toxicant concentrations did not exceed soil screening criteria values for lead within any flood sediments or for 32 of 37 soil samples, but arsenic concentrations in 40 of 43 samples exceeded screening criteria.
Immediately following hurricane Katrina concern was raised over the environmental impact of floodwaters on the city of New Orleans, especially in regard to human health. Several studies were conducted to determine the actual contaminant distribution throughout the city and surrounding wetlands by analyzing soil, sediment, and water for a variety of contaminants including organics, inorganics, and biologics. Preliminary investigations by The Institute of Environmental and Human Health at Texas Tech University concluded that soils and sediments contained pesticides, semi-volatiles, and metals, specifically arsenic, iron, and lead, at concentrations that could pose a significant risk to human health. Additional studies on New Orleans floodwaters revealed similar constituents as well as compounds commonly found in gasoline. More recently, it has been revealed that lead (Pb), arsenic, and vanadium are found intermittently throughout the city at concentrations greater than the human health soil screening levels (HHSSLs) of 400, 22 (non-cancer endpoint) and 390 μg/g, respectively. Of these, Pb appears to present the greatest exposure hazard to humans as a result of its extensive distribution in city soils. In this study, we spatially evaluated Pb concentrations across greater New Orleans surface soils. We established 128 sampling sites throughout New Orleans at approximately half-mile intervals. A soil sample was collected at each site and analyzed for Pb by ICP-AES. Soils from 19 (15%) of the sites had Pb concentrations exceeding the HHSSL threshold of 400 μg/g. It was determined that the highest concentrations of Pb were found in the south and west portions of the city. Pb concentrations found throughout New Orleans in this study were then incorporated into a geographic information system to create a spatial distribution model that can be further used to predict Pb exposure to humans in the city.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.