Renal cell carcinoma (RCC) is a common and devastating disease characterized by a hypoxic microenvironment, epithelial-mesenchymal transition and potent resistance to therapy evidencing the presence of cancer stem cells (CSCs). Various CSC markers have been studied in RCC, but overall there is limited data on their role and most markers studied have been relatively nonspecific. Doublecortin-like kinase 1 (DCLK1) is a validated CSC marker in the gastrointestinal tract and evidence for an equivalent role in other cancers is accumulating. We used bioinformatics, immunohistochemistry, flow cytometry, spheroid self-renewal and chemoresistance assays in combination with overexpression and siRNA-knockdown to study the stem cell-supportive role of DCLK1 alternative splice variants (DCLK1 ASVs) in RCC. To target tumor cells expressing DCLK1 ASVs directly, we developed a novel monoclonal antibody (CBT-15) and delivered it systemically to RCC tumor xenografts. DCLK1 ASVs were overexpressed, enriched together with CSC markers and predictive of overall and recurrence-free survival in RCC patients. In vitro, DCLK1 ASVs were able to directly stimulate essential molecular and functional characteristics of renal CSCs including expression of aldehyde dehydrogenase, self-renewal and resistance to FDA-approved receptor tyrosine kinase and mTOR inhibitors, while targeted downregulation of DCLK1 reversed these characteristics. Finally, targeting DCLK1 ASV-positive cells with the novel CBT-15 monoclonal antibody blocked RCC tumorigenesis in vivo. These findings establish DCLK1 as a CSC marker with implications for therapy, disease progression and survival in RCC and demonstrate the therapeutic value of DCLK1-targeted monoclonal antibodies against renal CSCs.
Phagocytic clearance of apoptotic germ cells by Sertoli cells is vital for germ cell development and differentiation. Here, using a tissue-specific miRNA transgenic mouse model, we show that interaction between miR-471-5p and autophagy member proteins regulates clearance of apoptotic germ cells via LC3-associated phagocytosis (LAP). Transgenic mice expressing miR-471-5p in Sertoli cells show increased germ cell apoptosis and compromised male fertility. Those effects are due to defective engulfment and impaired LAP-mediated clearance of apoptotic germ cells as miR-471-5p transgenic mice show lower levels of Dock180, LC3, Atg12, Becn1, Rab5 and Rubicon in Sertoli cells. Our results reveal that Dock180 interacts with autophagy member proteins to constitute a functional LC3-dependent phagocytic complex. We find that androgen regulates Sertoli cell phagocytosis by controlling expression of miR-471-5p and its target proteins. These findings suggest that recruitment of autophagy machinery is essential for efficient clearance of apoptotic germ cells by Sertoli cells using LAP.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.