Because of the continually rising levels of CO2 in the atmosphere, research for the conversion of CO2 into fuels using carbon-neutral energy is an important and current topic in catalysis. Recent research on molecular catalysts has led to improved rates for conversion of CO2 to formate, but the catalysts are based on precious metals such as iridium, ruthenium and rhodium and require high temperatures and high pressures. Using established thermodynamic properties of hydricity (ΔGH(-)) and acidity (pKa), we designed a cobalt-based catalyst system for the production of formate from CO2 and H2. The complex Co(dmpe)2H (dmpe is 1,2-bis(dimethylphosphino)ethane) catalyzes the hydrogenation of CO2, with a turnover frequency of 3400 h(-1) at room temperature and 1 atm of 1:1 CO2:H2 (74,000 h(-1) at 20 atm) in tetrahydrofuran. These results highlight the value of fundamental thermodynamic properties in the rational design of catalysts.
This study examines the use of transition-metal hydride complexes that can be generated by the heterolytic cleavage of H(2) gas to form B-H bonds. Specifically, these studies are focused on providing a reliable and quantitative method for determining when hydride transfer from transition-metal hydrides to three-coordinate BX(3) (X = OR, SPh, F, H; R = Ph, p-C(6)H(4)OMe, C(6)F(5), (t)Bu, Si(Me)(3)) compounds will be favorable. This involves both experimental and theoretical determinations of hydride transfer abilities. Thermodynamic hydride donor abilities (DeltaG(o)(H(-))) were determined for HRh(dmpe)(2) and HRh(depe)(2), where dmpe = 1,2-bis(dimethylphosphinoethane) and depe = 1,2-bis(diethylphosphinoethane), on a previously established scale in acetonitrile. This hydride donor ability was used to determine the hydride donor ability of [HBEt(3)](-) on this scale. Isodesmic reactions between [HBEt(3)](-) and selected BX(3) compounds to form BEt(3) and [HBX(3)](-) were examined computationally to determine their relative hydride affinities. The use of these scales of hydride donor abilities and hydride affinities for transition-metal hydrides and BX(3) compounds is illustrated with a few selected reactions relevant to the regeneration of ammonia borane. Our findings indicate that it is possible to form B-H bonds from B-X bonds, and the extent to which BX(3) compounds are reduced by transition-metal hydride complexes forming species containing multiple B-H bonds depends on the heterolytic B-X bond energy. An example is the reduction of B(SPh)(3) using HRh(dmpe)(2) in the presence of triethylamine to form Et(3)N-BH(3) in high yields.
The complex Co(dmpe)2H catalyzes the hydrogenation of CO2 at 1 atm and 21 °C with significant improvement in turnover frequency relative to previously reported second- and third-row transition-metal complexes. New studies are presented to elucidate the catalytic mechanism as well as pathways for catalyst deactivation. The catalytic rate was optimized through the choice of the base to match the pK a of the [Co(dmpe)2(H)2]+ intermediate. With a strong enough base, the catalytic rate has a zeroth-order dependence on the base concentration and the pressure of hydrogen and a first-order dependence on the pressure of CO2. However, for CO2:H2 ratios greater than 1, the catalytically inactive species [(μ-dmpe)(Co(dmpe)2)2]2+ and [Co(dmpe)2CO]+ were observed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.