Vaccines against influenza viruses with pandemic potential, including H5N1, are under development. Because of a lack of preexisting immunity to these viruses, adjuvants (immune potentiators or enhancers) are needed to improve immune responses, to conserve scarce vaccine, and for cross-protection against strains that have drifted evolutionarily from the original. Aluminum-based adjuvants do not improve vaccine immunogenicity for influenza subunit vaccines, whereas oil-in-water adjuvants are effective, especially with H5N1-inactivated vaccines. We used whole-genome-fragment phage display libraries followed by surface plasmon resonance (SPR) technologies to elucidate the effect of different adjuvants on the antibody repertoire against H5N1 vaccine in humans. The oil-in-water adjuvant MF59 induced epitope spreading from HA2 to HA1 in hemagglutinin (HA) and neuraminidase relative to unadjuvanted or aluminum-adjuvanted vaccines. Moreover, we observed an increase by a factor of 20 in the frequency of HA1-to-HA2-specific phage clones in sera after MF59-adjuvanted vaccine administration and a factor of 2 to 3 increase in the avidity of antibodies binding to properly folded HA1(28-319), as measured by SPR. The adjuvant-dependent increase in binding to conformational HA1 epitopes correlated with broadening of cross-clade neutralization and predicted improved in vivo protection. Thus, MF59 adjuvant improves the immune response to a H5N1 vaccine by inducing qualitative and quantitative expansion of the antibody repertoires with protective potential.
Background Necrotising enterocolitis (NEC) is the most common gastrointestinal emergency in premature infants. Immaturity of gastrointestinal immune regulation may predispose preterm infants to NEC as FOXP3 T regulatory cells (Treg) are critical for intestinal immune homoeostasis. Objective To investigate the hypothesis that abnormal developmental regulation of lamina propria Treg would define premature infants with NEC. Design Lamina propria mononuclear cell populations from surgically resected ileum from 18 patients with NEC and 30 gestational age-matched non-NEC surgical controls were prospectively isolated. Polychromatic flow cytometry was performed to phenotype and analyse lamina propria T cell populations. The cytokine gene expression profile in NEC tissue was compared with that of non-NEC controls. Results The total number of Treg, CD4, or CD8 T cells in each ileum section was independent of gestational age, age or postmenstrual age and similar between patients with NEC and controls. In contrast, the ratio of Treg to CD4 T cells or Treg to CD8 T cells was significantly lower in NEC ileum than in infants without NEC (medians 2.9% vs 6.6%, p=0.001 and medians 6.6% vs 25.9%, p<0.001, respectively). For any given number of CD4 or CD8 T cells, Treg were, on average, 60% lower in NEC ileum than in controls. NEC tissue cytokine gene expression profiles were characteristic of inhibited Treg development or function. Treg/CD4 and Treg/CD8 ratios recovered between initial resection for NEC and reanastomosis. Conclusion The proportion of lamina propria Treg is significantly reduced in the ileum of premature infants with NEC and may contribute to the excessive inflammatory state of this disease.
Avian H7N9 influenza viruses are group 2 influenza A viruses that have been identified as the etiologic agent for a current major outbreak that began in China in 2013 and may pose a pandemic threat. Here, we examined the human H7-reactive antibody response in 75 recipients of a monovalent inactivated A/Shanghai/02/2013 H7N9 vaccine. After 2 doses of vaccine, the majority of donors had memory B cells that secreted IgGs specific for H7 HA, with dominant responses against single HA subtypes, although frequencies of H7-reactive B cells ranged widely between donors. We isolated 12 naturally occurring mAbs with low half-maximal effective concentrations for binding, 5 of which possessed neutralizing and HA-inhibiting activities. The 5 neutralizing mAbs exhibited narrow breadth of reactivity with influenza H7 strains. Epitope-mapping studies using neutralization escape mutant analysis, deuterium exchange mass spectrometry, and x-ray crystallography revealed that these neutralizing mAbs bind near the receptor-binding pocket on HA. All 5 neutralizing mAbs possessed low numbers of somatic mutations, suggesting the clones arose from naive B cells. The most potent mAb, H7.167, was tested as a prophylactic treatment in a mouse intranasal virus challenge study, and systemic administration of the mAb markedly reduced viral lung titers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.