At scales much larger than the ion inertial scale and the gyroradius of thermal protons, the magnetohydrodynamic (MHD) theory is well equipped to describe the nature of solar wind turbulence. The turbulent spectrum itself is defined by a power law manifesting the energy cascading process. A break in the turbulence spectrum develops near-ion scales, signaling the onset of energy dissipation. The exact mechanism for the spectral break is still a matter of debate. In this work, we use the 20 Hz Mercury Surface, Space Environment, Geochemistry, and Ranging (MESSENGER) magnetic field data during four planetary flybys at different heliocentric distances to examine the nature of the spectral break in the solar wind. We relate the spectral break frequencies of the solar wind MHD turbulence, found in the range of 0.3–0.7 Hz, with the well-known characteristic spectral bump at frequencies ∼1 Hz upstream of planetary bow shocks. Spectral breaks and spectral bumps during three planetary flybys are identified from the MESSENGER observations, with heliocentric distances in the range of 0.3–0.7 au. The MESSENGER observations are complemented by one Magnetospheric Multiscale observation made at 1 au. We find that the ratio of the spectral bump frequency to the spectral break frequency appears to be r- and B-independent. From this, we postulate that the wavenumber of the spectral break and the frequency of the spectral bump have the same dependence on the magnetic field strength ∣B∣. The implication of our work on the nature of the break scale is discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.