The quantitative resistance gene ACCELERATED CELL DEATH 6 (ACD6), which encodes a transmembrane protein with intracellular ankyrin repeats, has been implicated in a trade-off between growth and defense among wild strains of Arabidopsis thaliana. Naturally hyperactive alleles of the ACD6-Est-1 type can lead to spontaneous activation of immune responses, although the extent of visible hyperimmunity in strains with this allele varies substantially. We have identified a natural suppressor locus, MODULATOR OF HYPERACTIVE ACD6 1 (MHA1), which codes for a small protein of ~7 kDa that attenuates activity of the ACD6-Est-1 allele. MHA1 and its paralog MHA1-LIKE (MHAL) differentially interact with specific ACD6 variants, and both MHA1 and MHAL peptides can bind to the ACD6 ankyrin repeats. MHAL also enhances accumulation of an ACD6 complex, thereby increasing activity of the ACD6 standard allele. The ACD6 ankyrin repeats are similar to those of transient receptor potential (TRP) ion channels, and several lines of evidence support that increased ACD6 activity is linked to enhanced calcium signaling. Our work highlights how the study of natural variation reveals new aspects of plant immunity.
It is shown that repulsive interactions have a crucial influence on the structure of prototypical non-covalently bonded systems. To explain this, we propose a molecular orbital-based model for the exchange-repulsion contribution to the total interaction energy. As a central result, our model shows that energetically preferred aggregate structures frequently exhibit reduced exchange repulsion, which can be deduced from the nodal structure of certain occupied orbitals. This is used to explain key features of the intermolecular potentials of the Cl 2 -He, benzene-benzene, and benzene-hexafluorobenzene aggregates, which are not correctly reproduced by commonly applied electrostatic models.
Niobium pnictide halides Nb4
PnX
11 (Pn = N, P; X = Cl, Br,
I) are reported with their average crystal structures. Individual
pnictide-capped butterfly cluster cores [Nb4P] in the structure
are interconnected into two-dimensional layers, with their electronic
and magnetic properties being analyzed.
It is shown that repulsive interactions have a crucial influence on the structure of prototypical non-covalently bonded systems. To explain this, we propose a molecular orbital based model for the exchange-repulsion contribution to the total interaction energy. As a central result, our model shows that energetically preferred aggregate structures exhibit reduced exchange repulsion, which can be deduced from the nodal structure of certain occupied orbitals. In this way, the directionality of halogen bonds and the preferred arrangements in pi-aggregates are explained using the Cl2-He, benzene-benzene, and benzene-hexafluorobenzene systems as examples, where commonly applied electrostatic models fail.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.