How climate controls hurricane variability has critical implications for society is not well understood. In part, our understanding is hampered by the short and incomplete observational hurricane record.
Hurricanes cause substantial loss of life and resources in coastal areas. Unfortunately, historical hurricane records are too short and incomplete to capture hurricane-climate interactions on multi-decadal and longer timescales. Coarse-grained, hurricane-induced deposits preserved in blue holes in the Caribbean can provide records of past hurricane activity extending back thousands of years. Here we present a high resolution record of intense hurricane events over the past 1500 years from a blue hole on South Andros Island on the Great Bahama Bank. This record is corroborated by shorter reconstructions from cores collected at two nearby blue holes. The record contains coarse-grained event deposits attributable to known historical hurricane strikes within age uncertainties. Over the past 1500 years, South Andros shows evidence of four active periods of hurricane activity. None of these active intervals occurred in the past 163 years. We suggest that Intertropical Convergence Zone position modulates hurricane activity on the island based on a correlation with Cariaco Basin titanium concentrations. An anomalous gap in activity on South Andros Island in the early 13th century corresponds to a period of increased volcanism. The patterns of hurricane activity reconstructed from South Andros Island closely match those from the northeastern Gulf of Mexico but are anti-phased with records from New England. We suggest that either changes in local environmental conditions (e.g., SSTs) or a northeastward shift in storm tracks can account for the increased activity in the western North Atlantic when the Gulf of Mexico and southeastern Caribbean are less active.
Most Atlantic hurricanes form in the Main Development Region between 9°N to 20°N along the northern edge of the Intertropical Convergence Zone (ITCZ). Previous research has suggested that meridional shifts in the ITCZ position on geologic timescales can modulate hurricane activity, but continuous and long-term storm records are needed from multiple sites to assess this hypothesis. Here we present a 3000 year record of intense hurricane strikes in the northern Bahamas (Abaco Island) based on overwash deposits in a coastal sinkhole, which indicates that the ITCZ has likely helped modulate intense hurricane strikes on the western North Atlantic margin on millennial to centennial-scales. The new reconstruction closely matches a previous reconstruction from Puerto Rico, and documents a period of elevated intense hurricane activity on the western North Atlantic margin from 2500 to 1000 years ago when paleo precipitation proxies suggest that the ITCZ occupied a more northern position. Considering that anthropogenic warming is predicted to be focused in the northern hemisphere in the coming century, these results provide a prehistoric analog that an attendant northern ITCZ shift in the future may again return the western North Atlantic margin to an active hurricane interval.
Modern and preserved coral reefs on islands exhibit a broad range of forms, from actively accreting fringing and barrier reefs to terraces preserved by drowning or subaerial exposure. Darwin's canonical model of reef development proposes an evolutionary sequence of reef forms as a volcanic island ages and subsides, from fringing reef to lagoon-bounding barrier reef to atoll. Compiled data from modern systems show, however, that many islands do not follow this sequence, implying that reefs are shaped by more than island subsidence alone. We show that the diversity of modern reef morphology arises from the combined effects of island subsidence, coral growth, and glacial sea-level cycles. A model for the evolution of a reef elevation profi le over the past 400 k.y. reveals that different combinations of reef accretion rate and island vertical motion produce a variety of forms that matches the observed distribution of modern reefs. This match occurs only if the model is driven by Pleistocene sea-level oscillations-few modern environments have the right combination of conditions to produce the Darwinian atoll progression.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.