High redshift galaxies permit the study of the formation and evolution of X-ray binary populations on cosmological timescales, probing a wide range of metallicities and star-formation rates. In this paper, we present results from a large scale population synthesis study that models the X-ray binary populations from the first galaxies of the universe until today. We use as input to our modeling the Millennium II Cosmological Simulation and the updated semi-analytic galaxy catalog by Guo et al. (2011) to self-consistently account for the star formation history and metallicity evolution of the universe. Our modeling, which is constrained by the observed X-ray properties of local galaxies, gives predictions about the global scaling of emission from X-ray binary populations with properties such as star-formation rate and stellar mass, and the evolution of these relations with redshift. Our simulations show that the X-ray luminosity density (X-ray luminosity per unit volume) from X-ray binaries in our Universe today is dominated by low-mass X-ray binaries, and it is only at z 2.5 that high-mass X-ray binaries become dominant. We also find that there is a delay of ∼ 1.1 Gyr between the peak of X-ray emissivity from low-mass Xray binaries (at z ∼ 2.1) and the peak of star-formation rate density (at z ∼ 3.1). The peak of the X-ray luminosity from high-mass X-ray binaries (at z ∼ 3.9), happens ∼ 0.8 Gyr before the peak of the star-formation rate density, which is due to the metallicity evolution of the Universe.
We present a novel implementation of supermassive black hole (SMBH) formation, dynamics, and accretion in the massively parallel tree+SPH code, ChaNGa. This approach improves the modeling of SMBHs in fully cosmological simulations, allowing for a more detailed analysis of SMBH-galaxy co-evolution throughout cosmic time. Our scheme includes novel, physically motivated models for SMBH formation, dynamics and sinking timescales within galaxies, and SMBH accretion of rotationally supported gas. The sub-grid parameters that regulate star formation (SF) and feedback from SMBHs and SNe are optimized against a comprehensive set of z = 0 galaxy scaling relations using a novel, multi-dimensional parameter search. We have incorporated our new SMBH implementation and parameter optimization into a new set of high resolution, large-scale cosmological simulations called Romulus. We present initial results from our flagship simulation, Romulus25, showing that our SMBH model results in SF efficiency, SMBH masses, and global SF and SMBH accretion histories at high redshift that are consistent with observations. We discuss the importance of SMBH physics in shaping the evolution of massive galaxies and show how SMBH feedback is much more effective at regulating star formation compared to SNe feedback in this regime. Further, we show how each aspect of our SMBH model impacts this evolution compared to more common approaches. Finally, we present a science application of this scheme studying the properties and time evolution of an example dual AGN system, highlighting how our approach allows simulations to better study galaxy interactions and SMBH mergers in the context of galaxy-BH co-evolution.
We introduce a sub-grid force correction term to better model the dynamical friction (DF) experienced by a supermassive black hole (SMBH) as it orbits within its host galaxy. This new approach accurately follows a SMBH's orbital decay and drastically improves over commonly used 'advection' methods. The force correction introduced here naturally scales with the force resolution of the simulation and converges as resolution is increased. In controlled experiments we show how the orbital decay of the SMBH closely follows analytical predictions when particle masses are significantly smaller than that of the SMBH. In a cosmological simulation of the assembly of a small galaxy, we show how our method allows for realistic black hole orbits. This approach overcomes the limitations of the advection scheme, where black holes are rapidly and artificially pushed toward the halo center and then forced to merge, regardless of their orbits. We find that SMBHs from merging dwarf galaxies can spend significant time away from the center of the remnant galaxy. Improving the modeling of SMBH orbital decay will help in making robust predictions of the growth, detectability, and merger rates of SMBHs, especially at low galaxy masses or at high redshift.
Recent discoveries of massive black holes (MBHs) in dwarf galaxies suggest that they may have a more common presence than once thought. Systematic searches are revealing more candidates, but this process could be accelerated by predictions from simulations. We perform a study of several high-resolution, cosmological, zoom-in simulations focusing on dwarf galaxies that host massive black holes at z = 0, with the aim of determining when the black holes are most observable. Larger dwarf galaxies are more likely to host MBHs than those of lower mass. About 50% of the MBHs in dwarfs are not centrally located, but rather are wandering within a few kpc of the galaxy center. The accretion luminosities of MBHs in dwarfs are low throughout cosmic time, rendering them extremely difficult to detect. However, the merger history of these MBHs is optimal for gravitational wave detection by LISA.
We present results from the “Mint” resolution DC Justice League suite of Milky Way–like zoom-in cosmological simulations, which extend our study of nearby galaxies down into the ultrafaint dwarf (UFD) regime for the first time. The mass resolution of these simulations is the highest ever published for cosmological Milky Way zoom-in simulations run to z = 0, with initial star (dark matter) particle masses of 994 (17900) M ⊙, and a force resolution of 87 pc. We study the surrounding dwarfs and UFDs, and find that the simulations match the observed dynamical properties of galaxies with −3 > M V > −19, and reproduce the scatter seen in the size–luminosity plane for r h ≳ 200 pc. We predict the vast majority of nearby galaxies will be observable by the Vera Rubin Observatory’s coadded Legacy Survey of Space and Time. We additionally show that faint dwarfs with velocity dispersions ≲5 km s−1 result from severe tidal stripping of the host halo. We investigate the quenching of UFDs in a hydrodynamical Milky Way context and find that the majority of UFDs are quenched prior to interactions with the Milky Way, though some of the quenched UFDs retain their gas until infall. Additionally, these simulations yield some unique dwarfs that are the first of their kind to be simulated, e.g., an H i-rich field UFD, a late-forming UFD that has structural properties similar to Crater 2, as well as a compact dwarf satellite that has no dark matter at z = 0.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.