Volatile market demands, stronger regionalization of markets, ever-shortening product and innovation cycles as well as an ongoing demand for individualized products increase the need for adaptable production systems. More than a century after the start of mass production, alternative production systems are required to go beyond the current state of the art concerning adaptability, flexibility and reconfigurability to market requirements and demands. Fluid Manufacturing Systems (FLMS) describe such new production system concepts. The basic idea is to dynamically adapt and change all logistics and production processes, based on the comprehensive application of cyber-physical production systems (CPPS), thus enabling ongoing change in setup, configuration and product scope. CPPS provide a high degree of changeability, thus allowing for fast adaptions of the system to the changing requirements. Therefore the processes are continuously assessed, benchmarked and reconfigured to match the functional capabilities of production and logistic resources to the actual requirements originating from products and external influencing factors. Within this paper, conventional production systems such as Dedicated Manufacturing Lines (DML), Matrix Manufacturing System (MMS) and Flexible Manufacturing Systems (FMS) are described and characterized using defined criteria. The paper closes with a description of the Fluid Manufacturing System (FLMS), the core hypotheses and the advantages of the presented concept compared to conventional productoion systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.