A one-dimensional premixed ethylene–air flame is investigated regarding the presence of various combustion intermediates and products relevant for the formation of carbonaceous particles for various equivalence ratios and spatial positions using in situ UV–Vis absorption spectroscopy. A laser driven light source in combination with a fast spectrometer allow to record absorption spectra at a high rate required for practical combustion devices. The approach is coupled with a least squares regression procedure using a database of several absorbing species in the flame. To account for the high temperature flame conditions, the absorption spectra are convoluted by a simplified Maxwell–Boltzmann distribution model. While the approach is based on several assumptions and a verification requires future detailed intercomparison with other techniques, a first semi-quantitative evaluation can be obtained. This novel approach opens a potential route to the in situ measurement of the evolution of polycyclic aromatic hydrocarbons (PAHs) in flames.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.