Interleukin 33 (IL-33) is a member of the IL-1 family of cytokines with a growing number of target cells and a plethora of biological functions. Although it has commonalities with other IL-1 cytokines, IL-33 exhibits some unique features. Here we review the biology of IL-33 and its receptor and develop a working model that describes two 'lives' for IL-33-one intracellular and one extracellular. Under healthy conditions, constitutively produced, intracellular IL-33 participates in maintaining barrier function by regulating gene expression as a nuclear protein. In parallel, nuclear IL-33 functions as a stored alarmin that is released when barriers are breached. Extracellular IL-33 coordinates immune defense and repair mechanisms while also initiating differentiation of helper T cells as the adaptive immune response is triggered.
IL-1α, like IL-1β, possesses multiple inflammatory and immune properties. However, unlike IL-1β, the cytokine is present intracellularly in healthy tissues and is not actively secreted. Rather, IL-1α translocates to the nucleus and participates in transcription. Here we show that intracellular IL-1α is a chromatin-associated cytokine and highly dynamic in the nucleus of living cells. During apoptosis, IL-1α concentrates in dense nuclear foci, which markedly reduces its mobile nature. In apoptotic cells, IL-1α is retained within the chromatin fraction and is not released along with the cytoplasmic contents. To simulate the in vivo inflammatory response to cells undergoing different mechanisms of death, lysates of cells were embedded in Matrigel plugs and implanted into mice. Lysates from cells undergoing necrosis recruited cells of the myeloid lineage into the Matrigel, whereas lysates of necrotic cells lacking IL-1α failed to recruit an infiltrate. In contrast, lysates of cells undergoing apoptotic death were inactive. Cells infiltrating the Matrigel were due to low concentrations (20-50 pg) of the IL-1α precursor containing the receptor interacting C-terminal, whereas the N-terminal propiece containing the nuclear localization site failed to do so. When normal keratinocytes were subjected to hypoxia, the constitutive IL-1α precursor was released into the supernatant. Thus, after an ischemic event, the IL-1α precursor is released by hypoxic cells and incites an inflammatory response by recruiting myeloid cells into the area. Tissues surrounding the necrotic site also sustain damage from the myeloid cells. Nuclear trafficking and differential release during necrosis vs. apoptosis demonstrate that inflammation by IL-1α is tightly controlled.hypoxia | necrosis | apoptosis | inflammation | alarmin
The Toll/interleukin-1 (IL-1) receptor (TIR) family comprises two groups of transmembrane proteins, which share functional and structural properties. The members of the IL-1 receptor (IL-1R) subfamily are characterized by three extracellular immunoglobulin (Ig)-like domains. They form heterodimeric signaling receptor complexes consisting of receptor and accessory proteins. The members of the Toll-like receptor (TLR) subfamily recognize alarm signals that can be derived either from pathogens or the host itself. TLRs possess leucine-rich repeats in their extracellular part. TLRs can form dimeric receptor complexes consisting of two different TLRs or homodimers in the case of TLR4. The TLR4 receptor complex requires supportive molecules for optimal response to its ligand lipopolysaccharide (LPS). A hallmark of the TIR family is the cytoplasmic TIR domain that is indispensable for signal transduction. The TIR domain serves as a scaffold for a series of protein-protein interactions which result in the activation of a unique signaling module consisting of MyD88, interleukin-1 receptor associated kinase (IRAK) family members and Tollip, which is used exclusively by TIR family members. Subsequently, several central signaling pathways are activated in parallel, the activation of NFkappaB being the most prominent event of the inflammatory response. Recent developments indicate that in addition to the common signaling module MyD88/IRAK/Tollip, other molecules can modulate signaling by TLRs, especially of TLR4, resulting in differential biological answers to distinct pathogenic structures. Subtle differences in TLR signaling pathways are now becoming apparent, which reveal how the innate immune system decides at a very early stage the direction in which the adaptive immune response will develop. The creation of pathogen-specific mediator environments by dendritic cells defines whether a cellular or humoral response will be activated in response to the pathogen.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.