Alphavirus replicon particle-based vaccine vectors derived from Sindbis virus (SIN), Semliki Forest virus,and Venezuelan equine encephalitis virus (VEE) have been shown to induce robust antigen-specific cellular, humoral, and mucosal immune responses in many animal models of infectious disease and cancer. However, since little is known about the relative potencies among these different vectors, we compared the immunogenicity of replicon particle vectors derived from two very different parental alphaviruses, VEE and SIN, expressing a human immunodeficiency virus type 1 p55Gag antigen. Moreover, to explore the potential benefits of combining elements from different alphaviruses, we generated replicon particle chimeras of SIN and VEE. Two distinct strategies were used to produce particles with VEE-p55 gag replicon RNA packaged within SIN envelope glycoproteins and SIN-p55 gag replicon RNA within VEE envelope glycoproteins. Each replicon particle configuration induced Gag-specific CD8 ؉ T-cell responses in murine models when administered alone or after priming with DNA. However, Gag-specific responses varied dramatically, with the strongest responses to this particular antigen correlating with the VEE replicon RNA, irrespective of the source of envelope glycoproteins. Comparing the replicons with respect to heterologous gene expression levels and sensitivity to alpha/ beta interferon in cultured cells indicated that each might contribute to potency differences. This work shows that combining desirable elements from VEE and SIN into a replicon particle chimera may be a valuable approach toward the goal of developing vaccine vectors with optimal in vivo potency, ease of production, and safety.
SummaryInterleukin 4-targeted (IL-4-/-) mice are defective in T helper (Th)2 cytokine production as determined after nematode infection. As Th2 cells appear to be selectively induced by oral immunization we investigated the ability of IL-4-/-mice to respond to perorally administered antigen. We found that IL-4-/-mice failed to respond to soluble protein antigens given perorally together with cholera toxin (CT) as a mucosal adjuvant. In contrast to wild-type mice no or poor anti-keyhole limpet hemocyanin (KLH) or anti-ovalbumin (OVA) B cell responses were observed in gut lamina propria, spleen, or serum of IL-4-/-mice after oral immunization. In addition, mucosal immunization failed to stimulate antigen-specific T cell responses in these mice. The lack of responsiveness was specific for mucosal administration of antigen and was not seen after intravenous injections with antigen and CT-adjuvant. The systemic adjuvant effect of CT was not impaired in IL-4-/-mice as evidenced by the strong enhancement of anti-KLH responses after intravenous immunization with KLH plus CT as opposed to KLH alone. However, CT as an immunogen, in contrast to KLH or OVA, stimulated significant mucosal and systemic immune responses in IL-4-/-mice after oral immunization. Both serum and intestinal IgA anti-CT antibodies were demonstrable in IL-4-/-mice as well as in wild-type mice. Total IgA levels in gut lavage and in serum of immunized IL-4-/-mice were of similar magnitude as in wild-type mice, suggesting that the ability of naive B cells to undergo isotype switchdifferentiation from IgM to IgA in IL-4-/-mice did not appear to be impaired. Immunohistochemical analysis of Peyer's patches demonstrated a complete inability to form germinal centers in IL-4-/-mice in contrast to wild-type mice. Our data suggest that IL-4-/-mice are unable to respond to oral/mucosal immunization due to a failure to stimulate antigen-specific cells required to induce germinal center reactions in the Peyer's patches. Our findings demonstrate that IL-4 and probably functional Th2 cells are required for induction of gut mucosal antibody responses.
The envelope (Env) glycoprotein of human immunodeficiency virus type 1 (HIV-1) is the major target of neutralizing antibody responses and is likely to be a critical component of an effective vaccine against AIDS. Although monomeric HIV envelope subunit vaccines (gp120) have induced high-titer antibody responses and neutralizing antibodies against laboratory-adapted HIV-1 strains, they have failed to induce neutralizing antibodies against diverse heterologous primary HIV isolates. Most probably, the reason for this failure is that the antigenic structure(s) of these previously used immunogens does not mimic that of the functional HIV envelope, which is a trimer, and thus these immunogens do not elicit high titers of relevant functional antibodies. We recently reported that an Env glycoprotein immunogen (o-gp140SF162⌬V2) containing a partial deletion in the second variable loop (V2) derived from the R5-tropic HIV-1 isolate SF162, when used in a DNA priming-protein boosting vaccine regimen in rhesus macaques, induced neutralizing antibodies against heterologous subtype B primary isolates as well as protection to the vaccinated animals upon challenge with pathogenic SHIV SF162P4 virus. Here we describe the purification of this protein to homogeneity, its characterization as trimer, and its ability to induce primary isolate-neutralizing responses in rhesus macaques. Optimal mutations in the primary and secondary protease cleavage sites of the env gene were identified that resulted in the stable secretion of a trimeric Env glycoprotein in mammalian cell cultures. We determined the molecular mass and hydrodynamic radius (R h ) using a triple detector analysis (TDA) system. The molecular mass of the oligomer was found to be 324 kDa, close to the expected M w of a HIV envelope trimer protein (330 kDa), and the hydrodynamic radius was 7.27 nm. Negative staining electron microscopy of o-gp140SF162⌬V2 showed that it is a trimer with considerable structural flexibility and supported the data obtained by TDA. The structural integrity of the purified trimeric protein was also confirmed by determinations of its ability to bind the HIV receptor, CD4, and its ability to bind a panel of well-characterized neutralizing monoclonal antibodies. No deleterious effect of V2 loop deletion was observed on the structure and conformation of the protein, and several critical neutralization epitopes were preserved and well exposed on the purified o-gp140SF162⌬V2 protein. In an intranasal priming and intramuscular boosting regimen, this protein induced high titers of functional antibodies, which neutralized the vaccine strain, i.e., SF162. These results highlight a potential role for the trimeric o-gp140SF162⌬V2 Env immunogen in a successful HIV vaccine.
The results of this study demonstrate that, in the nonhuman primate model, it is possible for vaccine-elicited immune responses to prevent infection after intravaginal administration of virus.
After more than 25 years of human immunodeficiency virus (HIV) research, a prophylactic vaccine able to control or prevent the worldwide spread of HIV/AIDS remains an elusive goal. Recent results in Thailand with the recombinant canary pox (ALVAC-HIV, vCP1521; Sanofi-Pasteur) prime-gp120 (AIDSVAX B/E) protein boost vaccine approach give us hope that such a vaccine is achievable (45). Nevertheless, the results from this trial as well as the disappointing outcome of the Step Study trial (7, 29, 46) vividly highlight the need to better understand the immune correlates of protection and the immune responses engendered by the diverse new vaccine technologies currently under evaluation (13,18,20,49). In the case of viral vectors, this is particularly critical, as the spectrum of immune responses elicited in animal models does not necessarily predict those eventually observed in human clinical trials and will require more thorough evaluations in order to identify the most predictive models. At the moment, nonhuman primate models, such as simian immunodeficiency virus (SIV) and simian-human immunodeficiency virus (SHIV) infection of macaques appear to be the most informative for guiding vaccine development (3,24,47,55), and more rigorous application of these models has begun to yield new and encouraging insights into protective immunity (5,19,27,56). Moreover, as most HIV transmissions occur through mucosal membranes, understanding the correlates of protection, following successful vaccinations, against mucosal challenge is of strong interest.Alphaviruses are positive-sense single-stranded 11.5-kb RNA viruses in the Togaviridae family. They are relatively simple enveloped viruses of approximately 60-nm diameter that have a cytoplasmic RNA-based life cycle and mature at the plasma membranes of infected cells. Recombinant alphavirus replicon particles used for vaccine applications are composed of a replicon vector that encodes the viral replicases (nonstructural proteins [NSPs]) and the vaccine antigen of interest and two packaging vectors that encode the major viral structural proteins (capsid and glycoproteins E1 and E2) required for particle formation. The chimeric (VEE/SIN) alpha-* Corresponding author. Mailing address: Novartis Vaccines and Diagnostics,
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.