Fine-tuning of particle size and morphology has been shown to result in differential material performance in the area of secondary lithium-ion batteries. For instance, reduction of particle size to the nanoregime typically leads to better transport of electrochemically active species by increasing the amount of reaction sites as a result of higher electrode surface area. The spinel-phase oxide LiNi0.5Mn1.5O4 (LNMO), was prepared using a sol-gel based template synthesis to yield nanowire morphology without any additional binders or electronic conducting agents. Therefore, proper experimentation of the nanosize effect can be achieved in this study. The spinel phase LMNO is a high energy electrode material currently being explored for use in lithium-ion batteries, with a specific capacity of 146 mAh/g and high-voltage plateau at ∼4.7 V (vs Li/Li(+)). However, research has shown that extensive electrolyte decomposition and the formation of a surface passivation layer results when LMNO is implemented as a cathode in electrochemical cells. As a result of the high surface area associated with nanosized particles, manganese ion dissolution results in capacity fading over prolonged cycling. In order to prevent these detrimental effects without compromising electrochemical performance, various coating methods have been explored. In this work, TiO2 and Al2O3 thin films were deposited using atomic layer deposition (ALD) on the surface of LNMO particles. This resulted in effective surface protection by prevention of electrolyte side reactions and a sharp reduction in resistance at the electrode/electrolyte interface region.
An Electrolytic Method for Tartrate Stabilization in Chardonnay Wine Michael ChenTartrate stabilization is the process that removes components that contribute to the crystallization of potassium hydrogen tartrate (KHT) and calcium tartrate (CaT) which is an undesirable outcome for wine quality. There are a variety of current tartrate stabilization techniques such as cold stabilization, chemical additives, ion exchange resins, and electrodialysis that stabilize wine, but the most popular being cold stabilization. Cold stabilization requires high amounts of energy and resources to stabilize wine. With the ever increasing demand for more efficient processing, an alternative tartrate stabilization technology based on an electrolytic method was developed and its viability to stabilize wine was determined. Twelve treatments involving different combinations of time and current were replicated three times each on different batches of Chardonnay wine. Several different variables were analyzed for stability and quality purposes. Tartaric acid, potassium, calcium, and conductivity differences were the most important factors for tartrate stability. Temperature, titratable acidity, pH, color (hue and intensity), and chemical oxygen demand (COD) were indicators of sensory quality characteristics of the wine. The concentrations of potassium, calcium, and tartaric acid were reduced by the electrolytic method at satisfactory process parameters, inherently making the wine more stable. The temperature and hue were significantly affected by the electrolytic method and accelerated the oxidative browning process. Electrolytic treatment of Chardonnay is a viable alternative stabilization technology. The technology can be further developed to become a great option in terms of water and energy consumption, process time, and price.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.