Bimetallic nanoparticles comprised of iron (Fe) and nickel (Ni) were investigated for the removal of an azo dye contaminant in water. Morphology (core shell and alloy) and metal molar ratio (Ni2Fe10, Ni5Fe10, and Ni10Fe10) were tested as key nanoparticle properties. The shelf life of the nanoparticles was tested over a 3-week period, and the effect of initial nanoparticle concentration on dye removal was evaluated. The highest initial nanoparticle concentration (1000 mg/L) showed consistent Orange G removal and the greatest extent of dye removal, as compared to the other tested concentrations (i.e., 750 mg/L, 500 mg/L, and 250 mg/L) for the same nanoparticle morphology and metal molar ratio. The metal molar ratio significantly affected the performance of the core shell morphology, where overall dye removal was found to be 66%, 89%, and 98% with an increasing molar ratio (Ni2Fe10 → Ni5Fe10 → Ni10Fe10). In contrast, the overall removal of the dye for all molar ratios of the alloy nanoparticles only resulted in a variability of ±0.005%. When stored in water for 3 weeks, core shell nanoparticles lost reactivity with an average>17% loss in removal with each passing week. However, the alloy nanoparticles were able to continually remove Orange G from solution after 3 weeks of storage to ~97% when used at a starting nanoparticle concentration of 1000 mg/L. Overall, the Ni2Fe10, Ni5Fe10, and Ni10Fe10 alloy nanoparticles with a starting nanoparticle concentration of 1000 mg/L resulted in the greatest dye removal of 97%, 99%, and 98%, respectively. Kinetic rate models were used to analyze dye removal rate constants as a function of nanoparticle properties. Kinetic rate models were seen to differ from core shell (first-order kinetics) to alloy morphology (second-order kinetics). Alloy nanoparticles resulted in as high as X kinetic rate constant, and core shell nanoparticles resulted in as high as XX kinetic rate constant. Metal leaching from the nanoparticles was investigated; alloy nanoparticles resulted in leaching of 3% Fe and 5% Ni which is similar to core shell leaching of 3.2% Fe and 4.3% Ni from the Fe10Ni10 nanoparticles.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.