BackgroundPrimary amoebic meningoencephalitis (PAM) is a rare, often lethal, cause of encephalitis, for which early diagnosis and prompt initiation of combination antimicrobials may improve clinical outcomes.MethodsIn this study, we sequenced a full draft assembly of the Balamuthia mandrillaris genome (44.2 Mb in size) from a rare survivor of PAM, and recovered the mitochondrial genome from six additional Balamuthia strains. We also used unbiased metagenomic next-generation sequencing (NGS) and SURPI bioinformatics analysis to diagnose an ultimately fatal case of Balamuthia mandrillaris encephalitis in a 15-year-old girl.Results and DiscussionComparative analysis of the mitochondrial genome and high-copy number genes from six additional Balamuthia mandrillaris strains demonstrated remarkable sequence variation, and the closest Balamuthia homologs corresponded to other amoebae, hydroids, algae, slime molds, and peat moss. Real-time NGS testing of hospital day 6 CSF and brain biopsy samples detected Balamuthia on the basis of high-quality hits to 16S and 18S ribosomal RNA sequences present in the National Center for Biotechnology Information (NCBI) nt reference database. The presumptive diagnosis of PAM by visualization of amoebae on brain biopsy histopathology and NGS analysis was subsequently confirmed at the US Centers for Disease Control and Prevention (CDC) using a Balamuthia-specific PCR assay. Retrospective analysis of a day 1 CSF sample revealed that more timely identification of Balamuthia by metagenomic NGS, potentially resulting in a better clinical outcome, would have required availability of the complete genome sequence.ConclusionsThese results underscore the diverse evolutionary origins of Balamuthia mandrillaris, provide new targets for diagnostic assay development, and will facilitate further investigations of the biology and pathogenesis of this eukaryotic pathogen. The failure to identify PAM from a day 1 sample without a fully sequenced Balamuthia genome in the database highlights the critical importance of whole-genome reference sequences for microbial detection by metagenomic NGS.Electronic supplementary materialThe online version of this article (doi:10.1186/s13073-015-0235-2) contains supplementary material, which is available to authorized users.
Background: Ex vivo fluorescent confocal microscopy (FCM) is a novel and effective method for a fast-automatized histological tissue examination. In contrast, conventional diagnostic methods are primarily based on the skills of the histopathologist. In this study, we investigated the potential of convolutional neural networks (CNNs) for automatized classification of oral squamous cell carcinoma via ex vivo FCM imaging for the first time. Material and Methods: Tissue samples from 20 patients were collected, scanned with an ex vivo confocal microscope immediately after resection, and investigated histopathologically. A CNN architecture (MobileNet) was trained and tested for accuracy. Results: The model achieved a sensitivity of 0.47 and specificity of 0.96 in the automated classification of cancerous tissue in our study. Conclusion: In this preliminary work, we trained a CNN model on a limited number of ex vivo FCM images and obtained promising results in the automated classification of cancerous tissue. Further studies using large sample sizes are warranted to introduce this technology into clinics.
Introduction:This case report describes a human survivor of Balamuthia mandrillaris infection. This is a free-living amoeba that can cause infection with the devastating consequence of near universally fatal encephalitis. We report this case to demonstrate the possibility of recovery.Case presentation:A 26-year-old Hispanic male, a landscape gardener, presented to the hospital in March 2010 with a two month history of headache, visual disturbances and new-onset seizures. Brain imaging identified two enhancing central lesions and Balamuthia mandrillaris was later identified by brain biopsy. He received several months of various antimicrobials including miltefosine, a novel use of the drug in this disease at the time. Seven weeks into therapy, considerations were made to switch him to ‘comfort care’ because of worsening clinical status and seemingly lack of response to treatment. The patient finally demonstrated clinical and radiological improvement after eight weeks with modified therapy, despite experiencing some debilitating toxic effects likely to be related to antibiotics. Two years after his initial presentation he made a complete recovery.Conclusion:Balamuthia mandrillaris amoebic encephalitis is considered an almost universally fatal disease; this case demonstrates the possibility of recovery. This report outlines his treatment, drug toxicities and includes additional information regarding the therapeutic use of the drug miltefosine. Whether his survival is related to the specific antimicrobials used in this case is unknown and further investigation is warranted.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.