Automated driving is seen as one of the key technologies that influences and shapes our future mobility. Modern advanced driver assistance systems (ADAS) play a vital role towards achieving this goal of automated driving. Depending on the level of automation, the ADAS takes over the complete or partial control of the movement of the car. Hence, it is mandatory that the system reacts reproducibly and safely in a wide range of possible situations. Especially in complex and potentially dangerous traffic scenarios a test system with the ability to simulate realistic scenarios is required. The authors present an implementation of a vehicle-in-the-loop (ViL) test system which accomplishes these goals in a defined environment. Of the great plenty of sensors stimulated in this context, the radar sensor takes a special position due to its robust and comprehensive information perceiving capability. Stimulating the automotive radar sensor in a ViL environment requires supporting the complex movements of the considered traffic scenarios. For this task, a modular and highly scalable radar target stimulator is necessary, which is capable of stimulating multiple independent moving targets with realistic parameters. The authors are discussing the underlying concepts of the suggested solution and are presenting its performance.
Car manufacturers spend quite a lot on the development of driver assistance systems and subsequently on autonomous driving functionality. To ensure the safety and reliability of these functions meet industrial standards it is necessary to verify and validate their functionality. While tests on the road are still the ultimate evidence of correct operation they are associated with huge efforts and risks. Therefore, they have to be complemented by other means like simulations and tests on specialised testbeds. For the latter the car's sensors have to be stimulated in a way that they perceive a desired -but only virtual -environment. An important type of sensor in cars is the radar due to its various advantages. This article describes the development of a stimulator generating virtual radar targets in order to enable the testing of autonomous driving functions.Keywords: radar systems; test equipment; radar applications; radar equipment; radar signal processing; radio frequency circuit design Virtuelle Realität für Radargeräte in Autos. Autohersteller investieren eine hohe Summe in die Entwicklung von Fahrerassistenzsystemen und in autonomes
More and more driver assistance systems are integrated into modern vehicles. This development results in a continuous rise in the complexity of these vehicles, as the functions have to comply to the corresponding safety standards. Testing and validating these functions on an automotive test bench instead of driving tests at closed proving grounds requires comprehensive stimulation of the involved sensors. In this article we are focusing on an approach for stimulating short-range radar sensors of a vehicle located on such a test bench. Coping with the requirements imposed by these types of sensors we investigate the usage of frequency multipliers and dividers in the frequency translation section of the radar stimulator. For this purpose, we provide an overview on different concepts for these multipliers and dividers. After reviewing the advantages and disadvantages of these devices, we provide measurement results of a stimulator setup applying this type of frequency translation.Keywords: radar systems; test equipment; radar applications; radar equipment; radar signal processing; radio frequency circuit design
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.