SUMMARY
Aptamers are structured macromolecules in vitro evolved to bind molecular targets, whereas in nature they form the ligand-binding domains of riboswitches. Adenosine aptamers of a single structural family were isolated several times from random pools but they have not been identified in genomic sequences. We used two unbiased methods, structure-based bioinformatics and human genome-based in vitro selection, to identify aptamers that form the same adenosine-binding structure in a bacterium, and several vertebrates, including humans. Two of the human aptamers map to introns of RAB3C and FGD3 genes. The RAB3C aptamer binds ATP with dissociation constants about ten times lower than physiological ATP concentration, while the minimal FGD3 aptamer binds ATP only co-transcriptionally.
Laboratory-evolved RNAs bind a wide variety of targets and serve highly diverse functions, including as diagnostic and therapeutic aptamers. The majority of aptamers have been identified using in vitro selection (SELEX), a molecular evolution technique based on selecting target-binding RNAs from highly diverse pools through serial rounds of enrichment and amplification. In vitro selection typically yields multiple distinct motifs of highly variable abundance and target-binding affinities. The discovery of new aptamers is often limited by the difficulty of characterizing the selected motifs, because testing of individual sequences tends to be a tedious process. To facilitate the discovery of new aptamers within in vitro selected pools, we developed Apta-Seq, a multiplex analysis based on quantitative, ligand-dependent 2′ acylation of solvent-accessible regions of the selected RNA pools, followed by reverse transcription (SHAPE) and deep sequencing. The method reveals, in a single sequencing experiment, the identity, structural features, and target dissociation constants for aptamers present in the selected pool. Application of Apta-Seq to a human genomic pool enriched for ATP-binding RNAs yielded three new aptamers, which together with previously identified human aptamers suggest that ligand-binding RNAs may be common in mammals.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.