The N-termini of bacterial lipoproteins are acylated with a (S)-(2,3-bisacyloxypropyl)cysteinyl residue. Lipopeptides derived from lipoproteins activate innate immune responses by engaging Toll-like receptor 2 (TLR2), and are highly immunostimulatory and yet without apparent toxicity in animal models. The lipopeptides may therefore be useful as potential immunotherapeutic agents. Previous structure-activity relationships in such lipopeptides have largely been obtained using murine cells and it is now clear that significant species-specific differences exist between human and murine TLR responses. We have examined in detail the role of the highly conserved Cys residue as well as the geometry and stereochemistry of the Cys-Ser dipeptide unit. (R)-diacylthioglycerol analogues are maximally active in reporter gene assays using human TLR2. The Cys-Ser dipeptide unit represents the minimal part-structure, but its stereochemistry was found not to be a critical determinant of activity. The thioether bridge between the diacyl and dipeptide units is crucial, and replacement by an oxoether bridge results in a dramatic decrease in activity.
The natural product curcumin has long been recognized for its medicinal properties and is utilized for the treatment of many diseases. However, it remains unknown whether this activity is based on its presumably promiscuous scaffold, or if it results from the Michael acceptor properties of the α,β-unsaturated 1,3-diketone moiety central to its structure. To probe this issue, electron-rich pyrazole and isoxazole analogues were prepared and evaluated against two breast cancer cell lines, which resulted in the identification of several compounds that exhibit low micromolar to mid nanomolar anti-proliferative activity. A conjugate addition study was also performed to compare the relative electrophilicity of the diketone, pyrazole and isoxazole analogues.
Isoprenoids constitute an important class of biomolecules that participate in many different cellular processes. Most available detection methods only allow the identification of one or two specific non-sterol isoprenoid intermediates following radioactive or fluorescent labeling. We here report a rapid, non-radioactive and sensitive procedure for the simultaneous detection and quantification of the 8 main non-sterol intermediates of the isoprenoid biosynthesis pathway by means of tandem mass spectrometry. Intermediates were analyzed by HPLC-MS/MS in the multiple reaction monitoring mode using a silica-based C18 HPLC column. For quantification, their stable-isotope-labeled analogues were used as internal standards. HepG2 cells were used to validate the method. Mevalonate, phosphomevalonate and the 6 subsequent isoprenoid-pyrophosphates were readily determined with detection limits ranging from 0.03 to 1.0 μmol/L. The intra- and interassay variations for HepG2 cell homogenates supplemented with isoprenoid intermediates were 3.6–10.9% and 4.4–11.9%, respectively. Under normal culturing conditions, isoprenoid intermediates in HepG2 cells were below detection limits. However, incubation of the cells with pamidronate, an inhibitor of farnesyl pyrophosphate synthase, resulted in increased levels of MVA, IPP/DMAPP and GPP. This method will be suitable to measure profiles of isoprenoid intermediates in cells with compromised isoprenoid biosynthesis, and to determine the specificity of potential inhibitors of the pathway.
Isothiocyanates (ITCs) are one of several hydrolysis products of glucosinolates, plant secondary metabolites which are substrates for the thioglucohydrolase myrosinase. Recent pursuits toward the development of synthetic, non-natural ITCs have consequently led to an exploration of generating these compounds from non-natural glucosinolate precursors. Evaluation of the myrosinase-dependent conversion of select non-natural glucosinolates to non-natural ITCs cannot be accomplished using established UV-Vis spectroscopic methods. To overcome this limitation, an alternative HPLC-based analytical approach was developed where initial reaction velocities were generated from non-linear reaction progress curves. Validation of this HPLC method was accomplished through parallel evaluation of three glucosinolates with UV-Vis methodology. The results of this study demonstrate that kinetic data is consistent between both analytical methods and that the tested glucosinolates respond similarly to both Michaelis–Menten and specific activity analyses. Consequently, this work resulted in the complete kinetic characterization of three glucosinolates with Sinapis alba myrosinase, with results that were consistent with previous reports.
Heat shock protein 90 has emerged as a promising target for the treatment of cancer and neurodegenerative diseases. This review summarizes recent advancements towards the development of natural products as they pertain to the biological and chemical understanding of this molecular chaperone.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.