Sharing research data by depositing it in connection with a published article or otherwise making data publicly available sometimes raises intellectual property questions in the minds of depositing researchers, their employers, their funders, and other researchers who seek to reuse research data. In this context or in the drafting of data management plans, common questions are (1) what are the legal rights in data; (2) who has these rights; and (3) how does one with these rights use them to share data in a way that permits or encourages productive downstream uses? Leaving to the side privacy and national security laws that regulate sharing certain types of data, this Perspective explains how to work through the general intellectual property and contractual issues for all research data.
This perspective explains the mechanics of copyright and scholarly publishing and warns authors who support open-access publishing about a new pseudo open-access publishing model in which authors pay but publishers still retain commercial reuse rights.
There is currently unprecedented interest in quantifying variation in thermal physiology among organisms, especially in order to understand and predict the biological impacts of climate change. A key parameter in this quantification of thermal physiology is the performance or value of a rate, across individuals or species, at a common temperature (temperature normalisation). An increasingly popular model for fitting thermal performance curves to data-the Sharpe-Schoolfield equation-can yield strongly inflated estimates of temperature-normalised rate values. These deviations occur whenever a key thermodynamic assumption of the model is violated, i.e., when the enzyme governing the performance of the rate is not fully functional at the chosen reference temperature. Using data on 1,758 thermal performance curves across a wide range of species, we identify the conditions that exacerbate this inflation. We then demonstrate that these biases can compromise tests to detect metabolic cold adaptation, which requires comparison of fitness or rate performance of different species or genotypes at some fixed low temperature. Finally, we suggest alternative methods for obtaining unbiased estimates of temperature-normalised rate values for meta-analyses of thermal performance across species in climate change impact studies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.