This tutorial review consists of five main sections. The first gives a general introduction and then a discussion about the need for luminescent assemblies. The next four sections present the various assemblies based on the metal ions used to assemble the final structures. Each of these sections gives a brief overview of the design principles, synthesis, and ground and excited-state properties of the ligands and complexes in question. The review concludes with some suggestions for future avenues of research.
Ru(II) polypyridine species have been assembled about dirhodium(II, II) tetracarboxylate cores. The complexes prepared have general formulas [{(terpy)Ru(La)}n{Rh2(CH3COO)4-n(CH3CN)2}]2n+ (a-type compounds: terpy = 2,2':6',2' '-terpyridine; La = 4'-(p-carboxyphenyl)-2,2':6',2' '-terpyridine; n = 1, 1a; n = 2, cis-2a and trans-2a-cis and trans refer to the arrangement of the Ru(II) species around the dirhodium core; n = 3, 3a), [{(Lb)Ru(La)}n{Rh2(CH3COO)4-n(CH3CN)2}]2n+ (b-type compounds: Lb = 6-phenyl-2,4-di(2-pyridyl)-s-triazine; n = 1, 1b; n = 2, an inseparable mixture of cis-2b and trans-2b; n = 3, 3b; n = 4, 4b), and [{(terpy)Ru(Lc)}{Rh2(CH3COO)3(CH3CN)2}]2+ (1c; Lc = 6-(p-carboxyphenyl)-2,4-di(2-pyridyl)-s-triazine). As model species, also the mononuclear [(terpy)Ru(La)]2+ (5a), [(La)Ru(Lb)]2+ (5b), and [(terpy)Ru(Lc)]2+ (5c) have been prepared. All of the complexes have been characterized by several techniques, including NMR and mass spectra, and the stability of the various species is discussed. The absorption spectra of all of the compounds are dominated by the Ru(II) polypyridine moieties, showing intense ligand-centered (LC) bands in the UV region and intense metal-to-ligand charge-transfer (MLCT) bands in the visible. The compounds exhibit several metal-centered oxidation and ligand-centered reduction processes, which have been assigned to specific subunits. Both absorption and redox data indicate a supramolecular nature of the assembled systems. Efficient energy transfer from the MLCT triplet state of the Ru-based components to the lowest-energy excited state of the dirhodium core takes place for the a-type compounds at 298 K in acetonitrile solution, whereas such a process is inefficient for the b-type and c-type species, which exhibit the typical MLCT emission. At 77 K in butyronitrile matrix, Ru-to-Rh2 energy transfer is partly efficient for both the a-type and the b-type compounds and is inefficient for 1c. The reasons for such behavior are discussed by taking into account arguments concerning the driving force and reorganization energy of the complexes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.