The correlation of Raman spectral indicators for the determination of alkyl chain interactions and conformational order is presented. These investigations probe the conformational order of bulk octadecane and low molecular weight polyethylene as they undergo solid/liquid phase transitions. Spectral indicators are quantitatively correlated to the I[ν a (CH 2 )]/I[ν s (CH 2 )], as this is the primary indicator of rotational and conformational order obtained empirically from Raman spectra. These indicators are interpreted in terms of alkane intramolecular motion, intermolecular interactions between alkyl chains, crystal structure of these solid materials, and the presence of methylene conformers. Results demonstrate that Raman spectroscopy is sensitive to very subtle changes in alkane chain structure and conformation. These results can be used to understand molecular interactions and structure-function relationships in alkane-based materials.
Raman spectroscopy is used to examine the effects of temperature, surface coverage, nature of the alkylsilane precursor (octadecyltrichlorosilane, methyloctadecyldichlorosilane, or dimethyloctadecylchlorosilane), and surface grafting method (surface or solution polymerized) on alkyl chain conformational order in a series of high-density octadecylsilane stationary phases ranging in surface coverage from 3.09 to 6.45 micromol/m2. Conformational order is assessed using the intensity ratio of the antisymmetric and symmetric v(CH2) modes as well as the frequency at which these Raman bands are observed. Conformational order increases with surface coverage. Temperature-induced surface phase changes are observed between 258 and 343 K for this homologous series of stationary phases that are demonstrated to adhere to the Clapeyron equation for a simple first-order transition. Phase changes are discussed in terms of variation of the molar enthalpy, molar entropy, and molar volume of the stationary phase, all of which depend on surface coverage. For the limited range of systems investigated, a correlation between stationary-phase preparation (surface versus solution polymerized and nature of the silane precursor) and extent of alkyl chain order is not clearly observed.Instead, akyl chain order is largely dependent on bonding density. A molecular picture of temperature-induced disorder in octadecylsilane stationary phases is proposed, with disorder originating at the distal carbon and propagating toward the proximal carbon.
Raman spectroscopy is used to examine the effects of solvent, temperature, and surface grafting method (surface or solution polymerized) on alkyl chain rotational and conformational order in a series of high-density octadecylsilane stationary phases ranging in surface coverage from 3.09 to 6.45 micromol/m2. Rotational and conformational order is assessed using the intensity ratio of the antisymmetric to symmetric v(CH2) modes as well as the frequency at which these Raman bands are observed. Solvents studied include perdeuterated hexane, toluene, chloroform, tetrahydrofuran, benzene, methanol, acetone, acetonitrile, and water. Stationary-phase order was investigated at temperatures between 258 and 323 K. Alkyl chain rotational and conformational order, and hence, solvation of the stationary phase, is dependent on solvent parameters (polarity, size, etc.), temperature, and stationary-phase properties (polymerization method and surface coverage). Information on stationary-phase conformational order allows solvent-stationary-phase interactions to be described in terms of a combination of adsorption and partitioning models for reversed-phase liquid chromatography. Finally, a distinct interplay between solvent- and temperature-induced ordering of these stationary phases is documented that is also a function of solvent and stationary-phase properties.
Raman spectroscopy is used to examine the subtle effects of polar, hydrogen-bonding solvents; temperature; and the surface grafting method (surface- or solution-polymerized) on alkyl chain rotational and conformational order in a series of high-density octadecylsilane stationary phases ranging in surface coverage from 3.09 to 6.45 micromol/m2. Rotational and conformational order is assessed using the intensity ratio of the antisymmetric to symmetric v(CH2) modes as well as the frequencies at which these Raman bands are observed. Alkyl rotational and conformational order decreases with decreasing surface coverage in these polar solvents, consistent with the behavior of these materials in air. For homogeneously distributed, high surface coverage materials, these polar solvents induce rotational ordering that is proposed to be due to the self-association of these solvents through hydrogen bonding or other dipole interactions at the alkylsilane-solvent interface. From these observations, molecular pictures of these solvent-stationary-phase interfaces are proposed in which solvent interaction with the stationary phase occurs primarily at the distal methyl group of the alkyl chains.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.