We report crystallographic data for a set of homologous γ-peptides that contain a Boc-protected residue derived from the flexible gabapentin monomer at the N-terminus and cyclically constrained γ-residues at all other positions. The crystallized γ-peptides range in length from 3 to 7 residues. Previously only one atomic-resolution structure had been available for a short γ-peptide 14-helix. The new data provided here allow derivation of characteristic parameters for the γ-peptide 14-helix, and establish guidelines for characterizing 14-helical folding in solution via 2D NMR. In addition, the results suggest that the substitution pattern of a γ-residue has a profound effect on the propensity for 14-helical folding.
Helix bundles are among the most widely studied tertiary and quaternary structural motifs in proteins. Here we present the crystal structure of an alpha/beta-peptide foldamer that adopts a tetrameric helix-bundle quaternary structure with a hydrophobic core composed solely of beta-amino acids. The structure displays features that are unprecedented among all known helix bundles composed of either alpha-peptides or peptidic foldamers. The tetramer is characterized by an asymmetry of interaction between neighboring helices, and the side-chain packing within the hydrophobic core differs fundamentally from the knobs-into-holes arrangement typical of most helix bundles.
H-bonded helices in conventional peptides (containing exclusively homochiral α-amino acid residues) feature a uniform H-bonding directionality, N-terminal side C═O to C-terminal side NH. In contrast, heterochiral α-peptides can form helices in which the H-bond directionality alternates along the backbone because neighboring amide groups are oriented in opposite directions. Alternating H-bond directions are seen also in helices formed by unnatural peptidic backbones, e.g., those containing β- or γ-amino acid residues. In the present study, we used NMR spectroscopy and crystallography to evaluate the conformational preferences of the novel γ-amino acid (1R,2R,3S)-2-(1-aminopropyl)-cyclohexanecarboxylic acid (APCH), which is constrained by a six-membered ring across its Cα-Cβ bond. These studies were made possible by the development of a stereoselective synthesis of N-protected APCH. APCH strongly enforces the α/γ-peptide 12/10-helical secondary structure, which features alternating H-bond directionality. Thus, APCH residues appear to have a conformational propensity distinct from those of other cyclically constrained γ-amino acid residues.
We report the asymmetric synthesis of the y-amino acid (1R,2R)-2-aminomethyl-1-cyclopentane carboxylic acid (AMCP) and an evaluation of this residue's potential to promote secondary structure in α/γ-peptides. Simulated annealing calculations using NMR-derived distance restraints obtained for α/γ-peptides in chloroform reveal that AMCP-containing oligomers are conformationally flexible. However, additional evidence that suggests an internally hydrogen-bonded helical conformation is partially populated in solution. From these data, we propose characteristic NOE patterns for formation of the α/γ-peptide 12/10-helix and present discussion of the apparent conformational frustration of AMCP-containing oligomers.
The problem of catalyst-controlled site-selectivity can potentially require a catalyst to overcome energetic barriers larger than those associated with enantioselective reactions. This challenge is a signature of substrates that present reactive sites that are not of equivalent reactivity. Herein we present a narrative of our laboratory's efforts to overcome this challenge using peptide-based catalysts. We highlight the interplay between understanding the inherent reactivity preferences of a given target molecule and the development of catalysts that can overcome intrinsic preferences embedded within a substrate.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.