Marine microalgae support world fisheries production and influence climate through various mechanisms. They are also responsible for harmful blooms that adversely impact coastal ecosystems and economies. Optimal growth and survival of many bloom-forming microalgae, including climatically important dinoflagellates and coccolithophores, requires the close association of specific bacterial species, but the reasons for these associations are unknown. Here, we report that several clades of Marinobacter ubiquitously found in close association with dinoflagellates and coccolithophores produce an unusual lower-affinity dicitrate siderophore, vibrioferrin (VF). Fe-VF chelates undergo photolysis at rates that are 10 -20 times higher than siderophores produced by free-living marine bacteria, and unlike the latter, the VF photoproduct has no measurable affinity for iron. While both an algal-associated bacterium and a representative dinoflagellate partner, Scrippsiella trochoidea, used iron from Fe-VF chelates in the dark, in situ photolysis of the chelates in the presence of attenuated sunlight increased bacterial iron uptake by 70% and algal uptake by >20-fold. These results suggest that the bacteria promote algal assimilation of iron by facilitating photochemical redox cycling of this critical nutrient. Also, binary culture experiments and genomic evidence suggest that the algal cells release organic molecules that are used by the bacteria for growth. Such mutualistic sharing of iron and fixed carbon has important implications toward our understanding of the close beneficial interactions between marine bacteria and phytoplankton, and the effect of these interactions on algal blooms and climate.algal blooms ͉ iron acquisition ͉ vibrioferrin ͉ Marinobacter ͉ photochemistry
The ability of bottom-dwelling marine epifauna to regenerate injured or lost body parts is critical to the survival of individuals from disturbances that inflict wounds. Numerous studies on marine sponges (Phlyum Porifera) and corals (of the orders Scleractinia and Alcyonacea) suggest that regeneration is limited by many intrinsic (individual-dependent) and extrinsic (environment-dependent) factors, and that other life history processes may compete with regeneration for energetic and cellular resources. We review how intrinsic (size, age, morphology, genotype) and extrinsic (wound characteristics, water temperature, food availability, sedimentation, disturbance history, selection) factors limit regeneration in sponges and corals. We then review the evidence for impaired somatic growth and sexual reproduction, and altered outcomes of interactions (anti-predator defenses, competitive abilities, self-and non-self recognition abilities) with other organisms in regenerating sponges and corals. We demonstrate that smaller, older sponges and corals of decreasing morphological complexities tend to regenerate less well than others, and that regeneration can be modulated by genotype. Large wounds with small perimeters inflicted away from areas where resources are located tend to be regenerated less well than others, as are injuries inflicted when food is limited and when the animal has been previously or recently injured. We also demonstrate that regeneration strongly impairs somatic growth, reduces aspects of sexual reproduction, and decreases the ability for sponges and corals to defend themselves against predators, to compete, and to recognize conspecifics. Effects of limited regeneration and impaired life histories may manifest themselves in higher levels of biological assembly e.g., reduced accretion of epifaunal biomass, reduced recruitment and altered biotic associations, and thus affect marine community and ecosystem recovery from disturbances.
The generality of operational species definitions is limited by problematic definitions of betweenspecies divergence. A recent phylogenetic species concept based on a simple objective measure of statistically significant genetic differentiation uses between-species application of statistical parsimony networks that are typically used for population genetic analysis within species. Here we review recent phylogeographic studies and reanalyse several mtDNA barcoding studies using this method. We found that (i) alignments of DNA sequences typically fall apart into a separate subnetwork for each Linnean species (but with a higher rate of true positives for mtDNA data) and (ii) DNA sequences from single species typically stick together in a single haplotype network. Departures from these patterns are usually consistent with hybridization or cryptic species diversity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.