We live life in the network. When we wake up in the morning, we check our e-mail, make a quick phone call, walk outside (our movements captured by a high definition video camera), get on the bus (swiping our RFID mass transit cards) or drive (using a transponder to zip through the tolls). We arrive at the airport, making sure to purchase a sandwich with a credit card before boarding the plane, and check our BlackBerries shortly before takeoff. Or we visit the doctor or the car mechanic, generating digital records of what our medical or automotive problems are. We post blog entries confiding to the world our thoughts and feelings, or maintain personal NIH Public Access
The strength of weak ties is that they tend to be long-they connect socially distant locations, allowing information to diffuse rapidly. The authors test whether this "strength of weak ties" generalizes from simple to complex contagions. Complex contagions require social affirmation from multiple sources. Examples include the spread of high-risk social movements, avant garde fashions, and unproven technologies. Results show that as adoption thresholds increase, long ties can impede diffusion. Complex contagions depend primarily on the width of the bridges across a network, not just their length. Wide bridges are a characteristic feature of many spatial networks, which may account in part for the widely observed tendency for social movements to diffuse spatially. Disciplines Communication | Social and Behavioral Sciences Comments Damon Centola was affiliated with Harvard University during the publication of this article.
We identified individual-level diurnal and seasonal mood rhythms in cultures across the globe, using data from millions of public Twitter messages. We found that individuals awaken in a good mood that deteriorates as the day progresses--which is consistent with the effects of sleep and circadian rhythm--and that seasonal change in baseline positive affect varies with change in daylength. People are happier on weekends, but the morning peak in positive affect is delayed by 2 hours, which suggests that people awaken later on weekends.
▪ Abstract Sociologists often model social processes as interactions among variables. We review an alternative approach that models social life as interactions among adaptive agents who influence one another in response to the influence they receive. These agent-based models (ABMs) show how simple and predictable local interactions can generate familiar but enigmatic global patterns, such as the diffusion of information, emergence of norms, coordination of conventions, or participation in collective action. Emergent social patterns can also appear unexpectedly and then just as dramatically transform or disappear, as happens in revolutions, market crashes, fads, and feeding frenzies. ABMs provide theoretical leverage where the global patterns of interest are more than the aggregation of individual attributes, but at the same time, the emergent pattern cannot be understood without a bottom up dynamical model of the microfoundations at the relational level. We begin with a brief historical sketch of the shift from “factors” to “actors” in computational sociology that shows how agent-based modeling differs fundamentally from earlier sociological uses of computer simulation. We then review recent contributions focused on the emergence of social structure and social order out of local interaction. Although sociology has lagged behind other social sciences in appreciating this new methodology, a distinctive sociological contribution is evident in the papers we review. First, theoretical interest focuses on dynamic social networks that shape and are shaped by agent interaction. Second, ABMs are used to perform virtual experiments that test macrosociological theories by manipulating structural factors like network topology, social stratification, or spatial mobility. We conclude our review with a series of recommendations for realizing the rich sociological potential of this approach.
A key challenge for automatic hate-speech detection on social media is the separation of hate speech from other instances of offensive language. Lexical detection methods tend to have low precision because they classify all messages containing particular terms as hate speech and previous work using supervised learning has failed to distinguish between the two categories. We used a crowd-sourced hate speech lexicon to collect tweets containing hate speech keywords. We use crowd-sourcing to label a sample of these tweets into three categories: those containing hate speech, only offensive language, and those with neither. We train a multi-class classifier to distinguish between these different categories. Close analysis of the predictions and the errors shows when we can reliably separate hate speech from other offensive language and when this differentiation is more difficult. We find that racist and homophobic tweets are more likely to be classified as hate speech but that sexist tweets are generally classified as offensive. Tweets without explicit hate keywords are also more difficult to classify.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.