A description of the ab initio quantum chemistry package GAMESS is presented. Chemical systems containing atoms through radon can be treated with wave functions ranging from the simplest closed-shell case up to a general MCSCF case, permitting calculations at the necessary level of sophistication. Emphasis is given to novel features of the program. The parallelization strategy used in the RHF, ROHF, UHF, and GVB sections of the program is described, and detailed speedup results are given. Parallel calculations can be run on ordinary workstations as well as dedicated parallel machines. 0 1993 by John Wiley & Sons, Inc.
A summary of the technical advances that are incorporated in the fourth major release of the Q-Chem quantum chemistry program is provided, covering approximately the last seven years. These include developments in density functional theory methods and algorithms, nuclear magnetic resonance (NMR) property evaluation, coupled cluster and perturbation theories, methods for electronically excited and openshell species, tools for treating extended environments, algorithms for walking on potential surfaces, analysis tools, energy and electron transfer modelling, parallel computing capabilities, and graphical user interfaces. In addition, a selection of example case studies that illustrate these capabilities is given. These include extensive benchmarks of the comparative accuracy of modern density functionals for bonded and non-bonded interactions, tests of attenuated second order Møller-Plesset (MP2) methods for intermolecular interactions, a variety of parallel performance benchmarks, and tests of the accuracy of implicit solvation models. Some specific chemical examples include calculations on the strongly correlated Cr 2 dimer, exploring zeolitecatalysed ethane dehydrogenation, energy decomposition analysis of a charged ter-molecular complex arising from glycerol photoionisation, and natural transition orbitals for a Frenkel exciton state in a nine-unit model of a self-assembling nanotube.Keywords quantum chemistry, software, electronic structure theory, density functional theory, electron correlation, computational modelling, Q-Chem Disciplines Chemistry CommentsThis article is from Molecular Physics: An International Journal at the Interface Between Chemistry and Physics 113 (2015): 184, doi:10.1080/00268976.2014. RightsWorks produced by employees of the U.S. Government as part of their official duties are not copyrighted within the U.S. The content of this document is not copyrighted. Authors 185A summary of the technical advances that are incorporated in the fourth major release of the Q-CHEM quantum chemistry program is provided, covering approximately the last seven years. These include developments in density functional theory methods and algorithms, nuclear magnetic resonance (NMR) property evaluation, coupled cluster and perturbation theories, methods for electronically excited and open-shell species, tools for treating extended environments, algorithms for walking on potential surfaces, analysis tools, energy and electron transfer modelling, parallel computing capabilities, and graphical user interfaces. In addition, a selection of example case studies that illustrate these capabilities is given. These include extensive benchmarks of the comparative accuracy of modern density functionals for bonded and non-bonded interactions, tests of attenuated second order Møller-Plesset (MP2) methods for intermolecular interactions, a variety of parallel performance benchmarks, and tests of the accuracy of implicit solvation models. Some specific chemical examples include calculations on the strongly corre...
The multiconfiguration self-consistent field (MCSCF) method offers the most general approach to the computation of chemical reactions and multiple electronic states. This review discusses the design of MCSCF wavefunctions for treating these problems and the interpretation of the resulting orbitals and configurations. In particular, localized orbitals are convenient both for selection of the appropriate active space and for understanding the computed results. The computational procedures for optimizing these wavefunctions and the techniques for recovery of dynamical correlation energy are reviewed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.