The membrane and actin cortex of a motile cell can autonomously differentiate into two states, one typical of the front, the other of the tail. On the substrate-attached surface of Dictyostelium discoideum cells, dynamic patterns of front-like and tail-like states are generated that are well suited to monitor transitions between these states. To image large-scale pattern dynamics independently of boundary effects, we produced giant cells by electric-pulse-induced cell fusion. In these cells, actin waves are coupled to the front and back of phosphatidylinositol (3,4,5)-trisphosphate (PIP3)-rich bands that have a finite width. These composite waves propagate across the plasma membrane of the giant cells with undiminished velocity. After any disturbance, the bands of PIP3 return to their intrinsic width. Upon collision, the waves locally annihilate each other and change direction; at the cell border they are either extinguished or reflected. Accordingly, expanding areas of progressing PIP3 synthesis become unstable beyond a critical radius, their center switching from a front-like to a tail-like state. Our data suggest that PIP3 patterns in normal-sized cells are segments of the selforganizing patterns that evolve in giant cells.
We present ab initio calculations of the local current density j(r) as it arises in dc-transport measurements. We discover pronounced patterns in the local current density, ring currents ("eddies"), that go along with orbital magnetism. Importantly, the magnitude of the ring currents can exceed the (average) transport current by orders of magnitude. We find associated magnetic fields that exhibit drastic fluctuations with field gradients reaching 1 T nm⁻¹ V⁻¹. The relevance of our observations for spin relaxation in systems with very weak spin-orbit interaction, such as organic semiconductors, is discussed. In such systems, spin relaxation induced by bias driven orbital magnetism competes with relaxation induced by the hyperfine interaction and appears to be of similar strength. We propose a NMR-type experiment in the presence of dc-current flow to observe the spatial fluctuations of the induced magnetic fields.
We calculate the spin-dependent zero-bias conductance G σσ in armchair graphene nanoribbons with hydrogen adsorbates employing a DFT-based ab initio transport formalism including spin-orbit interaction. We find that the spin-flip conductance G σσ can reach the same order of magnitude as the spin-conserving one, G σσ , due to exchange-mediated spin scattering. In contrast, the genuine spin-orbit interaction appears to play a secondary role, only.
We calculate the local current density in pristine armchair graphene nanoribbons (AGNRs) with varying width, N C , employing a DFT-based ab-initio transport formalism. We observe very pronounced current patterns ("streamlines") with threefold periodicity in N C . They arise as a consequence of quantum confinement in transverse flow direction. Neighboring streamlines are separated by stripes of almost vanishing flow. As a consequence, the response of the current to functionalizing adsorbates is very sensitive to their placement: adsorbates located within the current filaments lead to strong backscattering while adsorbates placed in other regions have almost no impact at all.
We present a formalism relying on density functional theory for the calculation of the spatially continuous electron current density j(r) and induced magnetic fields B(r) in molecular films in dc transport. The proposed method treats electron transport in graphene ribbons containing on the of order 10(3) atoms. The employed computational techniques scale efficiently when using several thousand CPUs. An application to transport through hydrogenated graphene will be presented. As we will show, the adatoms have an impact on the transmission function not only because they introduce additional states but also because their presence modifies the geometry of the carbon host lattice (lattice relaxation).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.