Changes to engine geometry and specifications can produce better torque, power, volumetric efficiency and more. The technique known as wave tuning can lead to better engine torque and power. This paper focuses on increasing the engine torque by improving the exhaust fluid flow through the exhaust manifold. Phasing and intensity of the pressure waves in the exhaust manifold have significant effects on scavenging, valve overlapping and pumping losses. In this research, individual and combined effects of variable exhaust runner diameter and exhaust valve timing on the fluid flow from exhaust of the engine are studied using computer simulation. An engine simulation software, Ricardo Wave, is utilized in this research. The analysis is conducted on a 1-D model of a KTM 510 cc single cylinder, four-stroke Sl engine. The data gathered shows that varying only the exhaust pipe diameter continuously with speed yields an average of 4.23% improvement in torque from the original engine model. However, due to practical constraints, the diameter is limited to vary in three steps (36 mm, 45 mm and 60 mm). This has reduced the average improvement of torque to 3.78%. Varying the valve timing alone gains an average of 1.94% improvement in torque. Varying both the exhaust pipe diameter in three steps and the exhaust valve timing yields an average of 4.69% improvement in torque. This average is conducted over the engine speed ranges from 2000 to 11,000 rpm.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.