Abstract. As a contribution to the Large-Scale BiosphereAtmosphere Experiment in Amazonia -Cooperative LBA Airborne Regional Experiment (LBA-CLAIRE-2001) field campaign in the heart of the Amazon Basin, we analyzed the temporal and spatial dynamics of the urban plume of Manaus City during the wet-to-dry season transition period in July 2001. During the flights, we performed vertical stacks of crosswind transects in the urban outflow downwind of Manaus City, measuring a comprehensive set of trace constituents including O 3 , NO, NO 2 , CO, VOC, CO 2 , and H 2 O. Aerosol loads were characterized by concentrations of total aerosol number (CN) and cloud condensation nuclei (CCN), and by light scattering properties. Measurements over pristine rainforest areas during the campaign showed low levCorrespondence to: U. Kuhn (uwe.kuhn@art.admin.ch) els of pollution from biomass burning or industrial emissions, representative of wet season background conditions. The urban plume of Manaus City was found to be joined by plumes from power plants south of the city, all showing evidence of very strong photochemical ozone formation. One episode is discussed in detail, where a threefold increase in ozone mixing ratios within the atmospheric boundary layer occurred within a 100 km travel distance downwind of Manaus. Observation-based estimates of the ozone production rates in the plume reached 15 ppb h −1 .Within the plume core, aerosol concentrations were strongly enhanced, with CN/ CO ratios about one order of magnitude higher than observed in Amazon biomass burning plumes. CN/ CO ratios tended to decrease with increasing transport time, indicative of a significant reduction in particle number by coagulation, and without substantial new particle nucleation occurring within the time/space observed. While in the background atmosphere a large Published by Copernicus Publications on behalf of the European Geosciences Union. 9252 U. Kuhn et al.: Impact of Manaus City on the Amazon Green Ocean atmosphere fraction of the total particle number served as CCN (about 60-80% at 0.6% supersaturation), the CCN/CN ratios within the plume indicated that only a small fraction (16 ± 12 %) of the plume particles were CCN. The fresh plume aerosols showed relatively weak light scattering efficiency. The COnormalized CCN concentrations and light scattering coefficients increased with plume age in most cases, suggesting particle growth by condensation of soluble organic or inorganic species.We used a Single Column Chemistry and Transport Model (SCM) to infer the urban pollution emission fluxes of Manaus City, implying observed mixing ratios of CO, NO x and VOC. The model can reproduce the temporal/spatial distribution of ozone enhancements in the Manaus plume, both with and without accounting for the distinct (high NO x ) contribution by the power plants; this way examining the sensitivity of ozone production to changes in the emission rates of NO x . The VOC reactivity in the Manaus region was dominated by a high burden of biogenic isoprene from the b...
Abstract. The methyl halides, methyl chloride (CH3C1), methyl bromide (CH3Br), and methyl iodide (CH3I), were measured in regional air samples and smoke from savanna fires in southern Africa during the Southern Africa Fire-Atmosphere Research Initiative-92 (SAFARI-92) experiment (August-October 1992). All three species were significantly enhanced in the smoke plumes relative to the regional background. Good correlations were found between the methyl halides and carbon monoxide, suggesting that emission was predominantly associated with the smoldering phase of the fires. About 90% of the halogen content of the fuel burned was released to the atmosphere, mostly as halide species, but a significant fraction (3-38%) was emitted in methylated form. On the basis of comparison with
[1] Trace gas exchange of NO 2 and O 3 at the soil surface of the primary rain forest in Reserva Biológica Jarú (Rondônia, Brazil) was investigated by chamber and gradient methods. The ground resistance to NO 2 and O 3 deposition to soil was quantified for dry and wet surface conditions using dynamic chambers and was found to be fairly constant at 340 ± 110 and 190 ± 70 s m À1 , respectively. For clear-sky conditions, the thermal stratification of the air in the first meter from the forest floor was stable during daytime and unstable during nighttime. The aerodynamic resistance to NO 2 and O 3 deposition to the ground in the first meter above the forest floor was determined by measurements of 220 Rn and CO 2 concentration gradients and CO 2 surface fluxes. The aerodynamic resistance of the 1-m layer above the ground was 1700 s m À1 during daytime and 600 s m À1 during nighttime. The deposition flux of O 3 and NO 2 was quantified for clear-sky conditions from the measured concentrations and the quantified resistances. For both trace gases, deposition to the soil was generally observed. The O 3 deposition flux to the soil was only significantly different from zero during daytime. The maximum of À1.2 nmol m À2 s À1 was observed at about 1800 and the mean daytime flux was À0.5 nmol m À2 s À1 . The mean NO 2 deposition flux during daytime was À1.6 ng N m À2 s À1 and during nighttime À2.2 ng N m À2 s À1 . The NO x budget at the soil surface yielded net emission day and night. The NO 2 deposition flux was 74% of the soil NO emission flux during nighttime and 34% during daytime. The plant uptake of NO 2 and O 3 by the leaves of Laetia corymbulosa and Pouteria glomerata, two typical plant species for the Amazon rain forest, was investigated in a greenhouse in Oldenburg (Germany) using branch cuvettes. The uptake of O 3 was found to be completely under stomatal control. The uptake of NO 2 was also controlled by the stomatal resistance but an additional mesophyll resistance of the same order of magnitude as the stomatal resistance was necessary to explain the observed uptake rate.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.