Water dynamics in the membrane electrode assembly (MEA) and flow channels of polymer electrolyte fuel cells (PEFCs) is governed by the complex interplay of many physical and operational factors. The chemical nature and structure of the gas diffusion layer (GDL) plays a large part in this and is affected by the extent to which is mechanically compressed. Here, X-ray computed tomography shows the effect of cell compression on the MEA, and how it differs under the land and channel regions. Multi-orientation neutron radiography reveals the effect of compression on the way in which water accumulates and is transported between land and channel and between cathode and anode. By performing neutron imaging in both the inplane and through-plane directions it is possible to determine what constitutes a given 'thickness' of water mapped across the extent of an MEA. Changing MEA compression from 25% to 35% has a significant effect on water distribution and dynamics in operational cells. The effect of compression on performance is most marked in the mass transport region and there are consequences for liquid accumulation in channels and back-diffusion of water from the cathode to the anode.
Highlights: X-ray computed tomography used to reconstruct three different types of GDL Models of GDLs analysed using Lattice Boltzmann method Invasion pattern and saturation of water in the GDLs is controlled by wettability Liquid water travelled with a stable displacement under hydrophilic angles Conversely, at hydrophobic contact angles it travelled with capillary fingering
Metal foam flow-fields have shown great potential in improving the uniformity of reactant distribution in polymer electrolyte fuel cells (PEFCs) by eliminating the 'land/channel' geometry of conventional designs. However, a detailed understanding of the water management in operational metal foam flow-field based PEFCs is limited. This study aims to provide the first clear evidence of how and where water is generated, accumulated and removed in the metal foam flow-field based PEFCs using in-operando neutron radiography, and correlate the water 'maps' with electrochemical performance and durability. Results show that the metal foam flow-field based PEFC has greater tolerance to dehydration at 1000 mA cm -2 , exhibiting a ~50% increase in voltage, ∼127% increase in total water mass and ~38% decrease in high frequency resistance (HFR) than serpentine flow-field design. Additionally, the metal foam flow-field promotes more uniform water distribution where the standard deviation of the liquid water thickness distribution across the entire cell active area is almost half that of the serpentine. These superior characteristics of metal foam flow-field result in greater than twice the maximum power density over serpentine flow-field. Optimizing fuel cell operating condition and foam microstructure would partly mitigate flooding in the metal foam flow-field based PEFC, which will form the basis of future work.
Hydrogen fuel cells have the potential to dramatically reduce emissions from the energy sector, particularly when integrated into an automotive application. However there are three main hurdles to the commercialisation of this promising technology; one of which is reliability. Current standards require an automotive fuel cell to last around 5000 hours of operation (equivalent to around 150,000 miles), which has proven difficult to achieve to date. This hurdle can be overcome through in-depth reliability analysis including techniques such as Failure Mode and Effect Analysis (FMEA) and Fault Tree Analysis (FTA) amongst others. Research has found that the reliability field regarding hydrogen fuel cells is still in its infancy, and needs development, if the current standards are to be achieved. In this work, a detailed reliability study of a Polymer Electrolyte Membrane Fuel Cell (PEMFC) is undertaken. The results of which are a qualitative and quantitative analysis of a PEMFC. The FMEA and FTA are the most up to date assessments of failure in fuel cells made using a comprehensive literature review and expert opinion.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.