Some harsh environments, such as those encountered by missiles, rockets and various types of industrial machinery, contain high frequency mechanical vibrations. Unfortunately, some very useful components are sensitive to these high frequency vibrations. Examples include MEMS gyroscopes, oscillators and some micro-optics. Exposure to high frequency mechanical vibrations present in the operating environment can result in problems ranging from an increased noise floor to component failure. Passive micromachined silicon lowpass filter structures (spring-mass-damper) have been demonstrated in recent years. Since they usually possess a low vertical profile, they can be utilized as the packaging substrate for the sensitive component requiring vibration isolation. The performance of these filter structures is typically limited by low damping and a lack of tunability after fabrication. However, filter performance can be enhanced by integrating fluidic damping techniques with the passive filter or by integrating a micromachined actuator with state feedback to realize an active filter. The active filter has the additional advantage of post fabrication tunability.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.