The rare decay B → K * (→ Kπ)µ + µ − is regarded as one of the crucial channels for B physics as the polarization of the K * allows a precise angular reconstruction resulting in many observables that offer new important tests of the Standard Model and its extensions. These angular observables can be expressed in terms of CP-conserving and CP-violating quantities which we study in terms of the full form factors calculated from QCD sum rules on the light-cone, including QCD factorization corrections. We investigate all observables in the context of the Standard Model and various New Physics models, in particular the Littlest Higgs model with T-parity and various MSSM scenarios, identifying those observables with small to moderate dependence on hadronic quantities and large impact of New Physics. One important result of our studies is that new CP-violating phases will produce clean signals in CP-violating asymmetries. We also identify a number of correlations between various observables which will allow a clear distinction between different New Physics scenarios. * wolfgang.altmannshofer@ph.tum.de † Patricia.Ball@durham.ac.uk
We study transition form factors for radiative and rare semi-leptonic B-meson decays into light pseudoscalar or vector mesons, combining theoretical constraints and phenomenological information from Lattice QCD, light-cone sum rules, and dispersive bounds. We pay particular attention to form factor parameterisations which are based on the so-called series expansion, and study the related systematic uncertainties on a quantitative level. In this context, we also provide the NLO corrections to the correlation function between two flavour-changing tensor currents, which enters the unitarity constraints for the coefficients in the series expansion. * a.k.m.bharucha@durham.ac.uk
Abstract. We present a MSSM study of the b → sγ decay in a Minimal Flavor Violating (MFV) framework, where the form of the soft SUSY breaking terms is determined by the Standard Model Yukawa couplings. In particular, we address the role of gluino contributions, which are set to zero in most studies of the MFV MSSM.Gluino contributions can play an important role in the MFV MSSM whenever µ × tan β is large. In fact, similarly to chargino contributions, gluino contributions are tan β enhanced and can easily dominate charged Higgs contributions for large values of tan β . Even though each of the separate contributions to b → sγ can be sizeable by itself, surprisingly no absolute lower bound can be placed on any of the relevant SUSY masses, since patterns of partial cancellations among the three competing contributions (Higgs, chargino and gluino) can occur throughout the MSSM parameter space.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.