PurposeHuman vision has a puzzling stereoscopic anisotropy: horizontal depth corrugations are easier to detect than vertical depth corrugations. To date, little is known about the function or the underlying mechanism responsible for this anisotropy. Here, we aim to find out whether this anisotropy is independent of age. To answer this, we compare detection thresholds for horizontal and vertical depth corrugations as a function of age.MethodsThe depth corrugations were defined solely by the horizontal disparity of random dot patterns. The disparities depicted a horizontal or vertical sinusoidal depth corrugation of spatial frequency 0.1 cyc/deg. Detection thresholds were obtained using Bayesian adaptive staircases from a total of 159 subjects aged from 3 to 73 years. For each participant we computed the anisotropy index, defined as the log10-ratio of the detection threshold for vertical corrugations divided by that for horizontal.ResultsAnisotropy index was highly variable between individuals but was positive in 87% of the participants. There was a significant correlation between anisotropy index and log-age (r = 0.21, P = 0.008) mainly driven by a significant difference between children and adults. In 67 children aged 3 to 13 years, the mean anisotropy index was 0.34 ± 0.38 (mean ± SD, meaning that vertical thresholds were on average 2.2 times the horizontal ones), compared with 0.59 ± 0.55 in 84 adults aged 18 to 73 years (vertical 3.9 times horizontal). This was mainly driven by a decline in the sensitivity to vertical corrugations. Children had poorer stereoacuity than adults, but had similar sensitivity to adults for horizontal corrugations and were actually more sensitive than adults to vertical corrugations.ConclusionsThe fact that adults show stronger stereo anisotropy than children raises the possibility that visual experience plays a critical role in developing and strengthening the stereo anisotropy.
Threshold functions for sinusoidal depth corrugations typically reach their minimum (highest sensitivity) at spatial frequencies of 0.2-0.4 cycles/degree (cpd), with lower thresholds for horizontal than vertical corrugations at low spatial frequencies. To elucidate spatial frequency and orientation tuning of stereoscopic mechanisms, we measured the disparity sensitivity functions, and used factor analytic techniques to estimate the existence of independent underlying stereo channels. The data set (N = 30 individuals) was for horizontal and vertical corrugations of spatial frequencies ranging from 0.1 to 1.6 cpd. A principal component analysis of disparity sensitivities (log-arcsec) revealed that two significant factors accounted for 70% of the variability. Following Varimax rotation to approximate "simple structure", one factor clearly loaded onto low spatial frequencies (≤0.4 cpd), and a second was tuned to higher spatial frequencies (≥0.8 cpd). Each factor had nearly identical tuning (loadings) for horizontal and vertical patterns. The finding of separate factors for low and high spatial frequencies is consistent with previous studies. The failure to find separate factors for horizontal and vertical corrugations is somewhat surprising because the neuronal mechanisms are believed to be different. Following an oblique rotation (Direct Oblimin), the two factors correlated significantly, suggesting some interdependence rather than full independence between the two factors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.