High-throughput immunosequencing allows reconstructing the immune repertoire of an individual, which is an exceptional opportunity for new immunotherapies, immunodiagnostics, and vaccine design. Such immune repertoires are shaped
Machine learning (ML) is a key technology to enable accurate prediction of antibody-antigen binding, a prerequisite for in silico vaccine and antibody design. Two orthogonal problems hinder the current application of ML to antibody-specificity prediction and the benchmarking thereof: (i) The lack of a unified formalized mapping of immunological antibody specificity prediction problems into ML notation and (ii) the unavailability of large-scale training datasets. Here, we developed the Absolut! software suite that allows the parameter-based unconstrained generation of synthetic lattice-based 3D-antibody-antigen binding structures with ground-truth access to conformational paratope, epitope, and affinity. We show that Absolut!-generated datasets recapitulate critical biological sequence and structural features that render antibody-antigen binding prediction challenging. To demonstrate the immediate, high-throughput, and large-scale applicability of Absolut!, we have created an online database of 1 billion antibody-antigen structures, the extension of which is only constrained by moderate computational resources. We translated immunological antibody specificity prediction problems into ML tasks and used our database to investigate paratope-epitope binding prediction accuracy as a function of structural information encoding, dataset size, and ML method, which is unfeasible with existing experimental data. Furthermore, we found that in silico investigated conditions, predicted to increase antibody specificity prediction accuracy, align with and extend conclusions drawn from experimental antibody-antigen structural data. In summary, the Absolut! framework enables the development and benchmarking of ML strategies for biotherapeutics discovery and design.
Adaptive immune receptor repertoires (AIRR) are key targets for biomedical research as they record past and ongoing adaptive immune responses. The capacity of machine learning (ML) to identify complex discriminative sequence patterns renders it an ideal approach for AIRR-based diagnostic and therapeutic discovery. To date, widespread adoption of AIRR ML has been inhibited by a lack of reproducibility, transparency, and interoperability. immuneML ( immuneml.uio.no ) addresses these concerns by implementing each step of the AIRR ML process in an extensible, open-source software ecosystem that is based on fully specified and shareable workflows. To facilitate widespread user adoption, immuneML is available as a command-line tool and through an intuitive Galaxy web interface, and extensive documentation of workflows is provided. We demonstrate the broad applicability of immuneML by (i) reproducing a large-scale study on immune state prediction, (ii) developing, integrating, and applying a novel method for antigen specificity prediction, and (iii) showcasing streamlined interpretability-focused benchmarking of AIRR ML. 1.
While neural networks have acted as a strong unifying force in the design of modern AI systems, the neural network architectures themselves remain highly heterogeneous due to the variety of tasks to be solved. In this chapter, we explore how to adapt the Layer-wise Relevance Propagation (LRP) technique used for explaining the predictions of feed-forward networks to the LSTM architecture used for sequential data modeling and forecasting. The special accumulators and gated interactions present in the LSTM require both a new propagation scheme and an extension of the underlying theoretical framework to deliver faithful explanations.Keywords: Explainable Artificial Intelligence · Model Transparency · Recurrent Neural Networks · LSTM · Interpretability L. Arras and J. Arjona-Medina contributed equally to this work.The final authenticated publication is available online at https://doi.
Generative machine learning (ML) has been postulated to become a major driver in the computational design of antigen-specific monoclonal antibodies (mAb). However, efforts to confirm this hypothesis have been hindered by the infeasibility of testing arbitrarily large numbers of antibody sequences for their most critical design parameters: paratope, epitope, affinity, and developability. To address this challenge, we leveraged a lattice-based antibody-antigen binding simulation framework, which incorporates a wide range of physiological antibody-binding parameters. The simulation framework enables the computation of synthetic antibody-antigen 3D-structures, and it functions as an oracle for unrestricted prospective evaluation and benchmarking of antibody design parameters of ML-generated antibody sequences. We found that a deep generative model, trained exclusively on antibody sequence (one dimensional: 1D) data can be used to design conformational (three dimensional: 3D) epitope-specific antibodies, matching, or exceeding the training dataset in affinity and developability parameter value variety. Furthermore, we established a lower threshold of sequence diversity necessary for high-accuracy generative antibody ML and demonstrated that this lower threshold also holds on experimental real-world data. Finally, we show that transfer learning enables the generation of high-affinity antibody sequences from low-N training data. Our work establishes a priori feasibility and the theoretical foundation of high-throughput ML-based mAb design.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.