Using intracellular microelectrode technique, the response of the voltage V across the plasma membrane of cultured bovine corneal endothelial cells to changes in sodium and bicarbonate concentrations was investigated. (1) The electrical response to changes in [HCO3-]o (depolarization upon lowering and hyperpolarization upon raising [HCO3-]o) was dependent on sodium. Lithium could fairly well be substituted for sodium, whereas potassium or choline were much less effective. (2) Removal of external sodium caused a depolarization, while a readdition led to a hyperpolarization, which increased with time of preincubation in the sodium-depleted medium. (3) The response to changes in [Na+]o was dependent on bicarbonate. In a nominally bicarbonate-free medium, its amplitude was decreased or even reversed in sign. (4) Application of SITS or DIDS (10(-3) M) had a similar effect on the response to sodium as bicarbonate-depleted medium. (5) At [Na+]o = 151 mM and [HCO3-]o = 46 mM, the transients of V depended, with 39.0 +/- 9.0 (SD) mV/decade, on bicarbonate and, with 15.3 +/- 5.8 (SD) mV/decade, on sodium. (6) After the preincubation of cells with lithium, replacement of Li by choline led to similar effects as the replacement of sodium by choline, though the response of V was smaller with Li. This response could be reduced or reversed by the removal of bicarbonate or by the application of SITS. (7) Amiloride (10(-3) M) caused a reversible hyperpolarization of the steady-state potential by 8.5 +/- 2.6 mV (SD). It did not affect the immediate response to changes in [Na+]o or [HCO3-]o, but reduced the speed of regaining the steady-state potential after a change in [HCO3-]o. (8) Ouabain (10(-4) M) caused a fast depolarization of -6.8 +/- 1.1 (SD) mV, which was followed by a continuing slower depolarization. The effect was almost identical at 10(-5) M. (9) It is suggested, that corneal endothelial cells possess a cotransport for sodium and bicarbonate, which transports net negative charge with these ions. It is inhibitable by stilbenes, but not directly affected by amiloride or ouabain. Lithium is a good substitute for sodium with respect to bicarbonate transport and is transported itself. In addition, the effect of amiloride provides indirect evidence for the existence of a Na+/H+-antiport. A model for the transepithelial transport of bicarbonate across the corneal endothelium is proposed.
K+ channels, membrane voltage, and intracellular free Ca2+ are involved in regulating proliferation in a human melanoma cell line (SK MEL 28). Using patch-clamp techniques, we found an inwardly rectifying K+ channel and a calcium-activated K+ channel. The inwardly rectifying K+ channel was calcium independent, insensitive to charybdotoxin, and carried the major part of the whole-cell current. The K+ channel blockers quinidine, tetraethylammonium chloride and Ba2+ and elevated extracellular K+ caused a dose-dependent membrane depolarization. This depolarization was correlated to an inhibition of cell proliferation. Charybdotoxin affected neither membrane voltage nor proliferation. Basic fibroblast growth factor and fetal calf serum induced a transient peak in intracellular Ca2+ followed by a long-lasting Ca2+ influx. Depolarization by voltage clamp decreased and hyperpolarization increased intracellular Ca2+, illustrating a transmembrane flux of Ca2+ following its electrochemical gradient. We conclude that K+ channel blockers inhibit cell-cycle progression by membrane depolarization. This in turn reduces the driving force for the influx of Ca2+, a messenger in the mitogenic signal cascade of human melanoma cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.