Understanding the non-local pressure contributions and viscous effects on the small-scale statistics remains one of the central challenges in the study of homogeneous isotropic turbulence. Here we address this issue by studying the impact of the pressure Hessian as well as viscous diffusion on the statistics of the velocity gradient tensor in the framework of an exact statistical evolution equation. This evolution equation shares similarities with earlier phenomenological models for the Lagrangian velocity gradient tensor evolution, yet constitutes the starting point for a systematic study of the unclosed pressure Hessian and viscous diffusion terms. Based on the assumption of incompressible Gaussian velocity fields, closed expressions are obtained as the results of an evaluation of the characteristic functionals. The benefits and shortcomings of this Gaussian closure are discussed, and a generalization is proposed based on results from direct numerical simulations. This enhanced Gaussian closure yields, for example, insights on how the pressure Hessian prevents the finite-time singularity induced by the local self-amplification and how its interaction with viscous effects leads to the characteristic strain skewness phenomenon.
Without a cure, vaccine, or proven long-term immunity against SARS-CoV-2, test-trace-and-isolate (TTI) strategies present a promising tool to contain its spread. For any TTI strategy, however, mitigation is challenged by pre- and asymptomatic transmission, TTI-avoiders, and undetected spreaders, which strongly contribute to ”hidden" infection chains. Here, we study a semi-analytical model and identify two tipping points between controlled and uncontrolled spread: (1) the behavior-driven reproduction number $${R}_{t}^{H}$$ R t H of the hidden chains becomes too large to be compensated by the TTI capabilities, and (2) the number of new infections exceeds the tracing capacity. Both trigger a self-accelerating spread. We investigate how these tipping points depend on challenges like limited cooperation, missing contacts, and imperfect isolation. Our results suggest that TTI alone is insufficient to contain an otherwise unhindered spread of SARS-CoV-2, implying that complementary measures like social distancing and improved hygiene remain necessary.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.