Dielectric elastomers are used as base material for so-called electroactive polymer (EAP) actuators. A procedure and a specific constitutive model (for the acrylic elastomer VHB 4910) are presented in this work for finite element modeling and simulation of dielectric elastomer actuators of general shape and set-up. The Yeoh strain energy potential and the Prony series are used for describing the large strain time-dependent mechanical response of the dielectric elastomer. Material parameters were determined from uniaxial experiments (relaxation tests and tensile tests). Thereby the inverse problem was solved using iterative finite element calculations. A pre-strained circular actuator was built and activated with a predefined voltage. A three-dimensional finite element model of the circular actuator was created and the electromechanical activation process simulated. Simulation and actual measurements agree to a great extent, thus leading to a validation of both the constitutive model and the actuator simulation procedure proposed in this work.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.