Zika virus (ZIKV), a mosquito-borne positive-stranded RNA virus of the family Flaviviridae (genus Flavivirus), is now causing an unprecedented large-scale outbreak in the Americas. Historically, ZIKV spread eastward from equatorial Africa and Asia to the Pacific Islands during the late 2000s to early 2010s, invaded the Caribbean and Central and South America in 2015, and reached North America in 2016. Although ZIKV infection generally causes no symptoms or only a mild self-limiting illness, it has recently been linked to a rising number of severe neurological diseases, including microcephaly and Guillain-Barré syndrome. Because of the continuous geographic expansion of both the virus and its mosquito vectors, ZIKV poses a serious threat to public health around the globe. However, there are no vaccines or antiviral therapies available against this pathogen. This review summarizes a fast-growing body of literature on the history, epidemiology, transmission, and clinical presentation of ZIKV and highlights the urgent need for the development of efficient control strategies for this emerging pathogen.
Zika virus (ZIKV), a mosquito-borne transplacentally transmissible flavivirus, is an enveloped virus with an ~10.8 kb plus-strand RNA genome that can cause neurological disease. To facilitate the identification of potential antivirals, we developed two reporter-expressing ZIKVs, each capable of expressing an enhanced green fluorescent protein or an improved luminescent NanoLuc luciferase. First, a full-length functional ZIKV cDNA clone was engineered as a bacterial artificial chromosome, with each reporter gene under the cap-independent translational control of a cardiovirus-derived internal ribosome entry site inserted downstream of the single open reading frame of the viral genome. Two reporter-expressing ZIKVs were then generated by transfection of ZIKV-susceptible BHK-21 cells with infectious RNAs derived by in vitro run-off transcription from the respective cDNAs. As compared to the parental virus, the two reporter-expressing ZIKVs grew to lower titers with slower growth kinetics and formed smaller foci; however, they displayed a genome-wide viral protein expression profile identical to that of the parental virus, except for two previously unrecognized larger forms of the C and NS1 proteins. We then used the NanoLuc-expressing ZIKV to assess the in vitro antiviral activity of three inhibitors (T-705, NITD-008, and ribavirin). Altogether, our reporter-expressing ZIKVs represent an excellent molecular tool for the discovery of novel antivirals.
In vitro protein display methods can access extensive libraries (e.g., 1012–1014) and play an increasingly important role in protein engineering. However, the preparation of large libraries remains a laborious and time-consuming process. Here we report an efficient one-pot ligation & elongation (L&E) method for sizeable synthetic library preparation free of PCR amplification or any purification steps. As a proof of concept, we constructed an ankyrin repeat protein templated synthetic library with 1011 variants in 150 μL volume. The entire process from the oligos to DNA template ready for transcription is linearly scalable and took merely 90 minutes. We believe this L&E method can significantly simplify the preparation of synthetic libraries and accelerate in vitro protein display experiments.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.