In this study we show that the naturally occurring Cterminally alternative spliced p53 (referred to as AS-p53) is active as a sequence-specific DNA binding protein as well as a 3' -5'-exonuclease in the presence of Mg 2+ ions. The two activities are positively correlated as the sequence-specific DNA target is more efficiently degraded than a non-specific target. In contrast, a mutated AS-p53 protein that is deficient in DNA binding lacks exonuclease activity. The use of modified p53 binding sites, where the 3'-phosphate is replaced by a phosphorothioate group, enabled the inhibition of DNA degradation under the binding conditions. We demonstrate that AS-p53 interacts with its specific DNA target by two distinct binding modes: a high-affinity mode characterized by a low-mobility protein-DNA complex at the nanomolar range, and a low-affinity mode shown by a high-mobility complex at the micromolar range. Comparison of the data on the natural and the modified p53 binding sites suggests that the high-affinity mode is related to AS-p53 function as a transcription factor and that the low-affinity mode is associated with its exonuclease activity. The implications of these findings to a specific cellular role of AS-p53 are discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.