BackgroundHuman milk provides necessary macronutrients (protein, carbohydrate, fat) required for infant nutrition. Lactoferrin (Lf), a multifunctional iron-binding protein predominant in human milk, shares similar protein sequence, structure, and bioactivity with bovine Lf (bLf). This large-scale pediatric nutrition study was designed to evaluate growth and tolerance in healthy infants who received study formulas with bLf at concentrations within the range of mature human milk.MethodsIn this multi-center, double-blind, parallel-designed, gender-stratified prospective study 480 infants were randomized to receive a marketed routine cow’s milk-based infant formula (Control; n = 155) or one of two investigational formulas with bLf at 0.6 g/L (LF-0.6; n = 165) or 1.0 g/L (LF-1.0; n = 160) from 14–365 days of age. Investigational formulas also had a prebiotic blend of polydextrose (PDX) and galactooligosaccharides (GOS) and adjusted arachidonic acid (ARA). The primary outcome was weight growth rate from 14–120 days of age. Anthropometric measurements were taken at 14, 30, 60, 90, 120, 180, 275, and 365 days of age. Parental recall of formula intake, tolerance, and stool characteristics was collected at each time point. Medically-confirmed adverse events were collected throughout the study period.ResultsThere were no group differences in growth rate (g/day) from 14–120 days of age; 353 infants completed the study through 365 days of age (Control: 110; LF-0.6: 127; LF-1.0: 116). Few differences in growth, formula intake, and infant fussiness or gassiness were observed through 365 day of age. Group discontinuation rates and the overall group incidence of medically-confirmed adverse events were not significantly different. From 30 through 180 days of age, group differences in stool consistency (P < 0.005) were detected with softer stools for infants in the LF-0.6 and LF-1.0 groups versus Control.ConclusionCompared to the Control, infants who received investigational formulas with bLf and the prebiotic blend of PDX and GOS experienced a softer stooling pattern similar to that reported in breastfed infants. This study demonstrated routine infant formulas with bLf, a blend of PDX and GOS, and adjusted ARA were safe, well-tolerated, and associated with normal growth when fed to healthy term infants through 365 days of age.Trial registrationClinicalTrials.gov NCT01122654. Registered 10 May 2010.
Inclusion of bovine-derived milk fat globule membrane (bMFGM) or bMFGM components in infant formulas (IFs) may support healthy brain development. This double-blind, prospective trial evaluated growth, tolerance, and iron status in infants receiving added bMFGM and modified protein, iron, and arachidonic acid (ARA) concentrations in IF. Healthy term infants were randomized to: control (marketed, routine cow’s milk-based IF/100 kcal: 2.1 g protein, 1.8 mg iron, 34 mg ARA) or INV-MFGM (investigational cow’s milk-based IF/100 kcal: 1.9 g protein, 1.2 mg iron, 25 mg ARA and whey protein-lipid concentrate, 5 g/L (source of bMFGM)). Anthropometrics, stool characteristics, fussiness, and gassiness through day 365 and blood markers of iron status at day 365 were evaluated. The primary outcome was rate of weight gain from 14–120 days of age. Of 373 infants enrolled (control: 191, INV-MFGM: 182), 275 completed the study (control: 141; INV-MFGM: 134). No group differences in growth rate (g/day) from day 14–120 or study discontinuation were detected. Few group differences in growth or parent-reported fussiness, gassiness, or stool characteristics were detected. No group differences were detected in hemoglobin, hematocrit, or incidence of anemia. In healthy term infants, bMFGM and modified protein, iron, and ARA concentrations in a cow’s milk-based IF were well-tolerated, associated with adequate growth throughout the first year of life, and supported normal iron status at one year of age.
Background Optimal protein level in hypoallergenic infant formulas is an area of ongoing investigation. The aim was to evaluate growth of healthy term infants who received extensively hydrolyzed (EH) or amino acid (AA)-based formulas with reduced protein. Methods In this prospective, multi-center, double-blind, controlled, parallel group study, infants were randomized to receive a marketed EH casein infant formula at 2.8 g protein/100 kcal (Control) or one of two investigational formulas: EH casein formula at 2.4 g protein/100 kcal (EHF) or AA-based formula at 2.4 g total protein equivalents/100 kcal (AAF). Control and EHF each had 2 × 107 CFU Lactobacillus rhamnosus GG/100 kcal. Anthropometrics were measured and recall of formula intake, tolerance, and stool characteristics was collected at 14, 30, 60, 90, 120 days of age. Primary outcome was weight growth rate (g/day) between 14 and 120 days of age (analyzed by ANOVA). Medically confirmed adverse events were recorded throughout the study. Results No group differences in weight or length growth rate from 14 to 120 days were detected. With the exception of significant differences at several study time points for males, no group differences were detected in mean head circumference growth rates. However, mean achieved weight, length, and head circumference demonstrated normal growth throughout the study period. No group differences in achieved weight or length (males and females) and head circumference (females) were detected and means were within the WHO growth 25th and 75th percentiles from 14 to 120 days of age. With the exception of Day 90, there were no statistically significant group differences in achieved head circumference for males; means remained between the WHO 50th and 75th percentiles for growth at Days 14, 30, and 60 and continued along the 75th percentile through Day 120. No differences in study discontinuation due to formula were detected. The number of participants for whom at least one adverse event was reported was similar among groups. Conclusions This study demonstrated hypoallergenic infant formulas at 2.4 g protein/100 kcal were safe, well-tolerated, and associated with appropriate growth in healthy term infants from 14 to 120 days of age. Trial registration ClinicalTrials.gov, ClinicalTrials.gov Identifier: NCT01354366. Registered 13 May 2011.
Docosahexaenoic acid (DHA) in infant formula at concentrations based on worldwide human milk has resulted in circulating red blood cell (RBC) lipids related to visual and cognitive development. In this study, infants received study formula (17mg DHA/100kcal) with a commercially-available (Control: n=140; DHASCO®) or alternative (DHASCO®-B: n=127) DHA single cell oil from 14 to 120 days of age. No significant group differences were detected for growth rates by gender through 120 days of age. Blood fatty acids at 120 days of age were assessed by capillary column gas chromatography in a participant subset (Control: n=34; DHASCO-B: n=27). The 90% confidence interval (91-104%) for the group mean (geometric) total RBC DHA (µg/mL) ratio fell within the pre-specified equivalence limit (80-125%), establishing study formula equivalence with respect to DHA. This study demonstrated infant formula with DHASCO-B was safe, well-tolerated, and associated with normal growth. Furthermore, DHASCO and DHASCO-B represented equivalent sources of DHA as measured by circulating RBC DHA.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.