We analyze a mathematical model for infectious diseases that progress through distinct stages within infected hosts. An example of such a disease is AIDS, which results from HIV infection. For a general n-stage stage-progression (SP) model with bilinear incidences, we prove that the global dynamics are completely determined by the basic reproduction number R0: If R(0) =/< 1; then the disease-free equilibrium P(0) is globally asymptotically stable and the disease always dies out. If R(0) > 1; P0 is unstable, and a unique endemic equilibrium P(*) is globally asymptotically stable, and the disease persists at the endemic equilibrium. The basic reproduction numbers for the SP model with density dependent incidence forms are also discussed.
An S-Ic-I-R epidemic model is investigated for infectious diseases that can be transmitted through carriers, infected individuals who are contagious but do not show any disease symptoms. Mathematical analysis is carried out that completely determines the global dynamics of the model. The impacts of disease carriers on the transmission dynamics are discussed through the basic reproduction number and through numerical simulations.
The dynamics of a neural network model in neutral form is investigated. We prove that a sequence of Hopf bifurcations occurs at the origin as the delay increases. The direction of the Hopf bifurcations and the stability of the bifurcating periodic solutions are determined by using normal form method and center manifold theory. Global existence of periodic solutions is established using a global Hopf bifurcation result of Krawcewicz et al. and a Bendixson's criterion for higher dimensional ordinary differential equations due to Li and Muldowney.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.