Pseudomonas aeruginosa uses quorum sensing (QS) as a cell-to-cell communication system to orchestrate the expression of virulence determinants. The biosynthesis of the important Pseudomonas quinolone signal (PQS) requires the pqsABCDE operon. Here, PqsE acts as a pathway-specific thioesterase, but it also contributes to the regulation of bacterial virulence via an unknown mechanism. In this manuscript, we report the discovery of PqsE inhibitors as tool compounds to gain further insights into its different functions. Differential scanning fluorimetry (DSF) was used to screen a fragment library, and isothermal titration calorimetry (ITC) was employed as a secondary filter. As proven by X-ray crystallography, hit molecules bound to the active center inhibiting PqsE's thioesterase activity in cell-based and in vitro assays. Notably, the ligands did not affect the levels of the PqsE-regulated virulence factor pyocyanin. These findings indicate that the regulatory function of PqsE is not linked to its thioesterase activity and must be encoded outside of the active center. This study highlights the potential of fragment-based screening for the discovery of tool compounds. This approach provided novel insight into complex biological systems, which could not be obtained by knockout studies.
The human pathogen Pseudomonas aeruginosa employs alkyl quinolones for cell-to-cell communication. The Pseudomonas quinolone signal (PQS) regulates various virulence factors via interaction with the transcriptional regulator PqsR. Therefore, we consider the development of PqsR antagonists a novel strategy to limit the pathogenicity of P. aeruginosa. A fragment identification approach using surface plasmon resonance screening led to the discovery of chemically diverse PqsR ligands. The optimization of the most promising hit (5) resulted in the oxadiazole-2-amine 37 showing pure antagonistic activity in Escherichia coli (EC50 = 7.5 μM) and P. aeruginosa (EC50 = 38.5 μM) reporter gene assays. 37 was able to diminish the production of the PQS precursor HHQ in a PqsH-deficient P. aeruginosa mutant. The level of the major virulence factor pyocyanin was significantly reduced in wild-type P. aeruginosa. In addition, site-directed mutagenesis in combination with isothermal titration calorimetry and NMR INPHARMA experiments revealed that the identified ligands bind to the same site of PqsR by adopting different binding modes. These findings will be utilized in a future fragment-growing approach aiming at novel therapeutic options for the treatment of P. aeruginosa infections.
Hit‐to‐lead optimization is a critical phase in drug discovery. Herein, we report on the fragment‐based discovery and optimization of 2‐aminopyridine derivatives as a novel lead‐like structure for the treatment of the dangerous opportunistic pathogen Pseudomonas aeruginosa. We pursue an innovative treatment strategy by interfering with the Pseudomonas quinolone signal (PQS) quorum sensing (QS) system leading to an abolishment of bacterial pathogenicity. Our compounds act on the PQS receptor (PqsR), a key transcription factor controlling the expression of various pathogenicity determinants. In this target‐driven approach, we made use of biophysical screening via surface plasmon resonance (SPR) followed by isothermal titration calorimetry (ITC)‐enabled enthalpic efficiency (EE) evaluation. Hit optimization then involved growth vector identification and exploitation. Astonishingly, the latter was successfully achieved by introducing flexible linkers rather than rigid motifs leading to a boost in activity on the target receptor and anti‐virulence potency.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.