Organ transplantation is the most effective therapy for patients with end-stage disease. Preservation solutions and techniques are crucial for donor organ quality, which is directly related to morbidity and survival after transplantation. Currently, static cold storage (SCS) is the standard method for organ preservation. However, preservation time with SCS is limited as prolonged cold storage increases the risk of early graft dysfunction that contributes to chronic complications. Furthermore, the growing demand for the use of marginal donor organs requires methods for organ assessment and repair. Machine perfusion has resurfaced and dominates current research on organ preservation. It is credited to its dynamic nature and physiological-like environment. The development of more sophisticated machine perfusion techniques and better perfusates may lead to organ repair/reconditioning. This review describes the history of organ preservation, summarizes the progresses that has been made to date, and discusses future directions for organ preservation.
BackgroundTransient protein-protein interactions (PPIs), which underly most biological processes, are a prime target for therapeutic development. Immense progress has been made towards computational prediction of PPIs using methods such as protein docking and sequence analysis. However, docking generally requires high resolution structures of both of the binding partners and sequence analysis requires that a significant number of recurrent patterns exist for the identification of a potential binding site. Researchers have turned to machine learning to overcome some of the other methods’ restrictions by generalising interface sites with sets of descriptive features. Best practices for dataset generation, features, and learning algorithms have not yet been identified or agreed upon, and an analysis of the overall efficacy of machine learning based PPI predictors is due, in order to highlight potential areas for improvement.ResultsThe presence of unknown interaction sites as a result of limited knowledge about protein interactions in the testing set dramatically reduces prediction accuracy. Greater accuracy in labelling the data by enforcing higher interface site rates per domain resulted in an average 44% improvement across multiple machine learning algorithms. A set of 10 biologically unrelated proteins that were consistently predicted on with high accuracy emerged through our analysis. We identify seven features with the most predictive power over multiple datasets and machine learning algorithms. Through our analysis, we created a new predictor, RAD-T, that outperforms existing non-structurally specializing machine learning protein interface predictors, with an average 59% increase in MCC score on a dataset with a high number of interactions.ConclusionCurrent methods of evaluating machine-learning based PPI predictors tend to undervalue their performance, which may be artificially decreased by the presence of un-identified interaction sites. Changes to predictors’ training sets will be integral to the future progress of interface prediction by machine learning methods. We reveal the need for a larger test set of well studied proteins or domain-specific scoring algorithms to compensate for poor interaction site identification on proteins in general.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.