Many inorganic materials can form crystals, but little is known about their enantioselective crystallization. Herein, we report on the enantioselective crystallization of ϵ‐Zn(OH)2 (Wulfingite) chiral crystals by using amino acids. Crystals of ϵ‐Zn(OH)2 were crystallized from supersaturated sodium hydroxide and zinc nitrate aqueous solutions in the presence of l‐ or d‐arginine. All of the chiral measurements, such as selective chiral adsorption by circular dichroism (CD), chiral chromatography, and polarimetry measurements, clearly show chiral discrimination during the crystallization of ϵ‐Zn(OH)2. In addition, a new method has been developed for identifying chirality in crystals by using electron paramagnetic resonance (EPR). Although the values of chiral induction of the ϵ‐Zn(OH)2 crystals obtained are somewhat low, these values are still significant because they demonstrate that enantioselectivity during the crystallization of chiral inorganic crystals with chiral additives can be achieved. The method can be applied to many chiral inorganic systems. Understanding and controlling the crystallization of chiral inorganic crystals is important for gaining knowledge on the interaction of chiral molecules with inorganic surfaces. This knowledge can lead to an understanding of basic scientific questions such as the evolution of homochirality in biomolecules and the development of chiral inorganic crystals for a variety of purposes such as asymmetric catalysis and optical applications.
Many inorganic materials can form crystals, but little is known about their enantioselective crystallization. Herein, we report on the enantioselective crystallization of ϵ‐Zn(OH)2 (Wulfingite) chiral crystals by using amino acids. Crystals of ϵ‐Zn(OH)2 were crystallized from supersaturated sodium hydroxide and zinc nitrate aqueous solutions in the presence of l‐ or d‐arginine. All of the chiral measurements, such as selective chiral adsorption by circular dichroism (CD), chiral chromatography, and polarimetry measurements, clearly show chiral discrimination during the crystallization of ϵ‐Zn(OH)2. In addition, a new method has been developed for identifying chirality in crystals by using electron paramagnetic resonance (EPR). Although the values of chiral induction of the ϵ‐Zn(OH)2 crystals obtained are somewhat low, these values are still significant because they demonstrate that enantioselectivity during the crystallization of chiral inorganic crystals with chiral additives can be achieved. The method can be applied to many chiral inorganic systems. Understanding and controlling the crystallization of chiral inorganic crystals is important for gaining knowledge on the interaction of chiral molecules with inorganic surfaces. This knowledge can lead to an understanding of basic scientific questions such as the evolution of homochirality in biomolecules and the development of chiral inorganic crystals for a variety of purposes such as asymmetric catalysis and optical applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.