Even though the rules for the free circulation of machinery within the European Union (EU) market have existed for more than 30 years, accidents related to their activities have constantly been reaching significant value. When designing a machine, the design must stem from a risk assessment, where all stages of its life cycle and the ways to use it must be taken into consideration. In industrial operations with old machinery, despite fulfilling its function reliably, the safety level is below the developing requirements for safe operations. The proposed methodology to assess machinery safety conditions comes from the assumption of the proper application of risk assessment steps and their effectiveness in risk reduction mainly through implementing both effective and efficient preventive measures. The objective of the research applied in three operations was to verify the methods concerning machinery safety and its management. The created methodology, based on 19 requirements for safety, evaluates the level of current measures using a criterion of the current safety status and the total effectiveness of safety measures. Its output is the assessment of the efficiency level of the implemented safety measures of each machine as well as of the whole operation.
The physical tasks of workers are demanding, particularly when performed long-term in unsuitable working position, with high frequency, heavy load, after injury, with developing damage of health or reduced performance due to advanced age. Work-related musculoskeletal disorders (WMSDs) result from overuse or develop over time. Work activities, which are frequent and repetitive, or activities with awkward postures, cause disorders that may be painful during work or at rest. There is a new technology in the market, occupational exoskeletons, which have the prerequisites for minimizing the negative consequences of workload on WMSDs. We provided pilot quantitative measurements of the ergonomic risk at one selected workplace in a Slovak automotive company with four different workers to prove our methodology using wearable wireless multi-sensor systems Captiv and Actigraph. At first, the test was performed in standard conditions without an exoskeleton. The unacceptable physical load was identified in considerable evaluated body areas—neck, hip, and shoulder. Next, the passive chair exoskeleton Chairless Chair 2.0 was used in trials as an ergonomic measure. Our intention was to determine whether an exoskeleton would be an effective tool for optimizing the workload in selected workplaces and whether the proposed unique quantitative measurement system would give reliable and quick results.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.